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0.1. This introduction is probably out-of-order for most students of topol-
ogy, but this merely reflects the order in which the author was introduced to
these topics. This very brief introduction assumes that the reader is familiar
with∞-categories (i.e., quasi-categories) and basic model-theoretic notions.

1. Spectra

1.0.1. Let C be the ∞-category of pointed spaces. Its objects are pointed
CW complexes, and k-simplices are homotopy coherent diagrams.1

Let Z be the ordered set of integers, which we think of as a category.

Definition A prespectrum is a functor X : N(Z × Z) → C such that
X(i, j) = pt for i 6= j. The category of prespectra is the simplicial set
of such functors, and a map between prespectra is an edge in this simplicial
set.

1.0.2. The operation N is the nerve functor from categories to simplicial
sets. We write X(i) for the object X(i, i).

1.0.3. All the information of a prespectrum X is contained in the diagrams

X(i)

��

//

$$JJJJJJJJJ
•

��
• // X(i+ 1)

which, by the universal property of the functors Ω and Σ (loop and suspen-
sion), are equivalent to maps X(i)→ ΩX(i+1), or maps ΣX(i)→ X(i+1).

Definition X is called a spectrum if the maps Xi → ΩXi+1 are homotopy
equivalences for all i.

1.0.4. Clearly, this is not equivalent to the condition that ΣXi → Xi+1 be
equivalences.

1There are actually two ways one can define C. One is as the simplicial nerve of the
category of Kan complexes. The second is as the topological nerve of the category of CW
complexes. This is obtained by first taking Sing of the mapping spaces, then applying
the simplicial nerve.
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1.0.5. Eilenberg-Maclane Spectra. We define KG, the Eilenberg-Maclane
spectrum for the abelian group G. This is defined as follows: KG(i) :=
K(G, i), where K(G, i) is the unique (up to homotopy type) CW complex
whose homotopy groups are G in dimension k, and 0 otherwise. The maps
K(G, i)→ ΩK(G, i+1) are chosen to be homotopy equivalences. The choice
of these maps is not unique, but all KG are isomorphic for a fixed G.

1.0.6. Maps of Spectra. A map between spectra is a map between prespec-
tra. By definition, a map f : X• → Y• of spectra is a collection of maps of
spaces fi : Xi → Yi satisfying the condition that Ωfi+1 is homotopic to the
map fi. This follows from the universal property of ΩYi+1.

1.1. Spectrification. There is a way to turn any prespectrum into a spec-
trum.

Proposition 1.1.1. Let X be a prespectrum. Then the assignment

Y (i) = colimj≥0 ΩjX(i+ j)

makes Y into a spectrum.

Proof. Applying Ω to the defining diagram for Y (i + 1), we obtain a map
Yi → ΩYi+1 by the universal property of Yi. Since Ω preserves sequential
homotopy colimits, this map is indeed an equivalence. �

1.1.1. The statement that Ω preserves sequential homotopy colimits is be-
cause Ω(X) = Hom(S1, X), and S1 is a compact topological object. In
general, for any sequential diagram Xα, a compact object A guarantees that

hocolim Hom(A,Xα)→ Hom(A,hocolimXα)

is a homotopy equivalence.2

1.2. Homotopy Groups. The process of turning a prespectrum into a
spectrum preserves an important invariant of prespectra. These are its ho-
motopy groups.

Note that the maps Xi → ΩXi give maps π∗Xi → π∗+1Xi+1.

Definition We define the kth homotopy group of a prespectrum X to be

πkX := colimi≥0 πk+iXi.

Proposition 1.2.1. The prespectrum X and the spectrum Y have isomor-
phic homotopy groups.

2This might seem an intimidating statement at first, but since homotopy colimits are
computed by taking honest colimits of cofibrations, and since Hom(A, •) preserves cofi-
brations, we need only show

colim(A,Xα) = Hom(A, colimXα)

for Xα a sequence of inclusions. This is an easily verified fact. One simply remembers
that, by definition, a closed set in an infinite union is contained at a finite stage.
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Proof. Tracing through the definition of each map, we see

πkY = colimπk+iYi

= colimπk+i(hocolimj ΩjXi+j)

= colimi,j πi+j+kXi+j

= πkX.

�

1.2.1. More is, in fact, true. By the definition of Y , we have a map of
spectra X → Y , and this induces an isomorphism π∗X → π∗Y . This is seen
easily by paying closer attention to the proof above.

1.2.2. Clearly, the construction X 7→ Y has no effect on X if it is already
a spectrum.

1.3. The Sphere Spectrum. Let S be the prespectrum whose ith space
is the i-sphere, Si, for all i ≥ 0. The structure maps Si → ΩSi+1 are the
adjoints to the homeomorphisms ΣSi → Si+1. We set Si = • for all i < 0.
Clearly, this is only a prespectrum. So we define S to be the spectrum
obtained by the spectrification above. The spaces Sj are difficult to describe,
but by definition, the kth homotopy group of S is the kth stable homotopy
group of spheres.

1.4. Thom Spectra. Let Ek →Mk be a sequence of vector bundles. Fur-
ther assume there are maps ik : Mk →Mk+1 such that i∗k(Ek+1) = Ek ⊕ R.
Then we have a prespectrum whose kth space is given by the Thom space
of Ek. (These arise, for example, by taking Ek to be the canonical k-plane
bundle over the classifying space of some matrix group acting on Rk.) Such
(pre)spectra are named after Thom for his applications to studying smooth
cobordisms and characteristic classes.

2. Review of Loops and Suspensions

2.1. There are two ways I like to get at the loop and suspension functors.
The first is more formal, and the second is via explicit construction.

2.2. In any category with a zero object (for example, the category of pointed
spaces), one can try to compute the limit of the following diagram:

*

��
* // X.

Here, * is the zero object.
If such a limit exists, we call it ΩX. By the universal property of limits,

this gives us an endofunctor from a category to itself.
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Similarly, we can ask for the colimit of the diagram

X //

��

*

*

and we can call the resulting functor Σ.

2.3. The above construction produces disastrous results if taken in a non-
homotopical sense. Clearly, taking the ordinary limit (or colimit) in spaces
will not produce the loop space of X, nor the reduced suspension of X, in
any ordinary sense. If, however, by ‘limit’ and ‘colimit,’ we understand the
need to take a homotopy limit (and homotopy colimit), the above definitions
work fine. One must of course understand that the universal property in the
homotopical sense does not produce an object up to unique isomorphism,
but an object up to contractible choice of equivalence.

2.4. So, there is no unique object ΩX, or ΣX, from this categorical view-
point. But we can often take explicit models, at least in the homotopy
category of spaces. This is done in the standard way by replacing the map
* → X by a trivial fibration. Namely, we define the path space PX to be
the space of continuous, pointed maps [0, 1]→ X, and define the projection
PX → X by evaluation at the point 1. Then taking the honest limit yields
the loop space, ΩX.

Similarly, we can replace a map X → * by a cofibration by defining the
cone of X, CX, and taking the inclusion map X ↪→ CX.

2.5. Ω∞. For all finite k, the functor Σk has a right adjoint, called Ωk. One
might wonder if there is still an interesting adjunction as k →∞. Unfortu-
nately, it is clear that the obvious definition of Σ∞X yields a contractible
space. So such an adjunction

“ Hom(Σ∞X,Y ) = Hom(X,Ω∞Y ),′′

would demand that Ω∞Y be contractible as well. At the level of spaces, the
notion of Ω∞Y as a functor is not interesting for any object Y .

2.6. There is, however, an interesting functor from spectra to spaces by
taking a spectrum X to the space X0.


