
Chapter 1

Notes on BG (for a class talk)

In class Wednesday we got pretty confused. I think it became unclear which
categories we were working in, what the definitions of the morphisms were, why
certain things were enriched over SSet, why we needed to “replace,” what it
even means to “replace,” et cetera. So in this two-section post I’d like to talk
about our confusions to clarify the murky waters. In the second section I’ll lay
out an independent introduction to stacks.

1.0.1 A Reminder of Where We’ve Been

The name of our group is “infinity categories.” In the end we want the objects
we study to be ∞-categories. So let me remind you of how we stumble upon
infinity-categories (or, in math speak, how we construct infinity-categories). If
you’re very familiar with this stuff, this section may be boring.

As a reminder, an infinity-category is defined as a purely combinatorial/simplicial
idea. It is a kind of simplicial set.

Definition An ∞-category is a weak Kan complex. A weak Kan complex
is a simplicial set such that all inner horns can be filled.

And (this is from my second talk) this is the main way in which we get
infinity-categories:

Theorem 1.0.1. Let C be a simplicial category. (That is, C is a category
whose Hom-sets happen to be the zero-simplices of some simplicial set, and
composition respects products in simplicial sets. Another word for this: C is
a category enriched over simplicial sets.) If C has the property that all of its
Homs are Kan complexes, then its simplicial nerve is an infinity-category.
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There are probably three ideas which deserve comment: (1) The idea of a
simplicial category, (2) The hypothesis that Hom-sets be Kan, and (3) The idea
of a simplicial nerve. I’ll comment on these ideas in the next section—for now,
my reminder from me to you is that (1) gives us a context for homotopy theory,
(2) is obtained by replacing bad objects with good ones, and (3) is what sum-
marizes the homotopy information into a simplicial set we call an ∞-category.
Now I want to get to the meat of Wednesday’s confusions: I describe simplicial
schemes, and stacks, and what we need to do homotopy theory.

1.0.2 A Description of Simplicial Schemes and BG

We want the category of stacks to be a category which behaves well ho-
motopically. That is, we want to be able to find a good interpretation of
HomStacks(X,Y ), where X and Y are stacks, and we are looking at maps of
stacks, whatever that means. Since we haven’t used the word “stack” too of-
ten, from now on I’ll rather use the word “simplicial scheme,” which is probably
more familiar to you, and is more or less the same thing.1

So a simplicial scheme is a functor from ∆op to Schemes. In other words,
it is a diagram

X0
�
� X1

�
�
� X2 . . .

where each Xi is a scheme, and all arrows are maps of schemes. Of course the
diagram neglects the degeneration maps and doesn’t explicitly state the rela-
tions between arrows, but they should satisfy the same combinatorial relations
that are satisfied in the category ∆.2

We also defined the simplicial scheme BG. For now, let me denote BG
·

to be the simplicial scheme, and BG to be the functor from Rings to sSets.3

The whole point of course is that both BG and BG
·
should mean the same

thing philosophically, but for the purposes of notation I want to make this
distinction. As a simplicial scheme, BG

·
is given by

pt �
� G

�
�
� G × G . . .

1I say ‘more or less’ because a stack needs to satisfy a sheafification condition which a

simplicial scheme on its own might neglect.
2I will not review the definition of ∆ here. Please look at an earlier post.
3In class we kept writing a functor from Schemesop to sSets, but that’s the same thing,

after we imposed gluing conditions, as a covariant functor from Rings to sSets.
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where the degeneration maps → were given by inclusion into G× . . .×G× id,
and the face maps (the ones going from right to left in the diagram) were given
by projection or by multiplication. So far so good.

In class, we got a little excited. We said, “alright, let’s now look at
Hom(S,BG

·
) where S is some scheme.” We all knew, deep in our hearts,

that this should give us a simplicial set with the following interpretation:
“The vertices represent all principal G-bundles of S, and the connected

components of this simplicial set represents all isomorphism classes of principal
G-bundles.”

Towards achieving an object fitting this description, we tried to define what
HomsSchemes(S,BG∆) should mean. And to do this we needed to think of S,
which is a scheme, as a simplicial scheme.

1.0.3 Thinking of schemes as simplicial schemes, and
how naivete can hurt us. (The Need to Replace.)

Let me talk about the idea of going from Schemes to sSchemes. I do this
in two ways: (1) I’ll present the analogue of going from Sets to sSets, and
(2) I’ll present the (less precise, but very illustrative) analogue of going from
R-Modules to Chain Complexes.

(1) Sets →֒ sSets. When we have a set X, there is a natural way in which
we can think of it as a simplicial set. Namely, look at the diagram

X �
� X

�
�
� X

�
�
�
�

. . .

where every map—every single one, degeneracies and face maps—is the identity
X → X. These obviously satisfy the combinatorial relations imposed by ∆op.
So this is the quick way in which we can think of X ∈ Sets as an object in
sSets. I’ll refer to this “simplicialized” version as X

·
∈ sSets.

The same construction works in Schemes. Let S be a scheme, and let
S

·
∈ sSchemes be the “simplicialized” version given by

S �
� S

�
�
� S

�
�
�
�

. . .

where every arrow is the identity map S → S in schemes. This seems to
be a very natural way to embed Schemes →֒ sSchemes. However, there is a
problem with this, which I’ll illustrate by looking at an analogous example in
R-modules.
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(2) R-modules →֒ Chain Complexes. When we are given an R-module
M , there is an easy way to embed it into Chain Complexes. Namely,

. . . → 0 → M → 0 → 0 → . . .

Which is as naive an embedding as we can get. Many of us are probably
thinking “well, there’s another way, which is to take a projective resolution!”
and I think the same. But why do we want to think of M by its resolution,
and not by this dumb embedding? Because HomChain Complexes(M,X) behaves
completely differently depending on which M we take—the naive embedding,
which I’ll call M

·
, or the resolution, which I’ll call RM . For instance, M

·
→ X

may be a quasi-isomorphism of chain complexes, but it will not in general have
an inverse! Projective resolutions have a much nicer behavior. The point being:
when we want to embed R-modules in Chain Complexes in a way which allows
us to do homotopy theory, the naive embedding will not suffice. We always
need to replace the naive embedding by a nicer object.

1.0.4 Hammer Home the Point: I Told You So

So, you know what? Let’s not replace S
·
. And let’s compute HomsSchemes(S·

, BG
·
)

so that we see how badly we need to replace S
·
. Let’s make a mistake so we

can learn from it.

Let me remind you that our goal is to say: “This Hom-set should give us
a simplicial set whose vertices are G-bundles over S, and whose edges give
isomorphisms between them. Hence the connected components should be iso-
morphism classes of G-bundles.” This example will show us that if we don’t
replace S

·
, we are indeed very far away from our goal.

Let’s first understand Hom as a set—not as a simplicial set. In the end,
the Hom-set will represent the vertices of our simplicial set. A map between
simplicial schemes is by definition a natural transformation; hence any F ∈
HomsSchemes(S·

, BG
·
) is a commutative diagram

S �
� S

�
�
� S

�
�
�
�

. . .

pt

F0

?
�
� G

F1

?
�
�
� G × G

F2

? �
�
�
�

. . .
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where each Fi is a map of schemes. That is, each Fi is an element of HomSchemes(S,
∏

i G).
By the usual interpretation of the functor of points, we can therefore think of
each Fi as a point in the set

∏
i G(S).

Now look at any commutative square in this picture. For example, look at

S
�
�
� S

G

F1

?
�
�
� G × G

F2

?

Then by the commutativity of the diagram (remember the degeneracy and face
maps), we see that F2 needs to be the point (e, e) in G(S) × G(S), and F1

needs to be the point e ∈ G(S). That is, there is only one map from S
·
to BG

·
.

Forget connected components, this naive replacement is telling us that for any
scheme S, there is only one map into BG. This is not what we want.

1.0.5 So What If We Do Replace

Now choose any open cover {Ui} of S, such that over each Ui, any G-bundle
must be trivial. For example, if S = CP 1, we can cover it by two open sets
which are isomorphic to A1. We then define the simplicial scheme U

·
as

∐
Ui

�
�

∐
Ui ∩ Uj

�
�
�

∐
Uijk . . .

where Uijk = Ui ∩ Uj ∩ Uk, and the arrows are the various inclusions we can
make. This is the Cech nerve of the open cover. Then what does it mean for
us to have a natural transformation U

·
→ BG

·
?

∐
Ui

�
�

∐
Ui ∩ Uj

�
�
�

∐
Uijk . . .

pt

F0

?
�
� G

F1

?
�
�
� G × G

F2

?

Well, F0 corresponds to choosing the only G-bundle we can for each open set
in our cover—the trivial bundle. Commutativity of this diagram means that
on the overlaps, we can find an isomorphism g ∈ G which moves us from one
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trivial bundle, over Ui, into another, over Uj. Then the map F2 is the cocyle
condition between these choices of g for each intersection Ui ∩ Uj. The higher
Fi as in a sense “higher cocycle conditions” which seem redundant in light of
the fact that G is associative. In short, each F is a choice of a G-bundle. This
is exactly what we expect.

1.0.6 How are we enriched over sSet?

So we’ve shown the idea that HomsSchemes(S,BG) as a set represents principal
G-bundles over S. We need to prove the claim that this can be viewed as a
simplicial set whose vertices are the usual Hom-set, and whose edges represent
isomorphisms between the G-bundles. This is something we can do of any
functor category into simplicial sets, and it helps most to understand how SSet
itself is enriched over SSet. (After all, if we look at the functor category into
some category A, it is often the case that the structures of A are carried over to
the functor category. I think this is a pretty general theme in mathematics—
when we look at maps into A, this mapping space often borrows structure from
A.) Let me not get into it because I’m running out of time before I have to
post this.

1.1 Comments on the Construction of Infinity-

Categories

These are comments on the first paragraph of my notes. It is intended mainly
for people who need a summary of what I talked about in the first two talks I
gave. You can choose which paragraphs to read, and which not to.

(1) Simplicial Categories. Many of our favorite categories turn out to be
simplicial. SSets are simplicial categories. As is Top. (Top is enriched over it-
self, and you can use the Quillen equivalence between Top and SSet—i.e., take
the singular chains—to make each Hom-space into a Hom-sSet.) Chain com-
plexes are simplicial categories. (Because chain complexes form a dg-category,
we can truncate each Hom-dgcomplex to be concentrated in non-negative de-
grees, then apply Dold-Kan to get a sAb-category, which in particular is a
simplicial category.) In fact enriching each Hom-set by simplicial sets gives us
a way to think about homotopy theory—the vertices of our Hom(X,Y ) rep-
resent maps between X and Y , the 1-simplices represent homotopies between
them, the 2-simplicies represent higher homotopies, and so forth. So I think of



1.1. COMMENTS ON THE CONSTRUCTION OF INFINITY-CATEGORIES7

a “simplicial category” as one which comes equipped, ready to be abused by
homotopy theorists.

(2) The Condition that the Homs are Kan Complexes. Most of our
favorite simplicial categories do not have Hom-sSets which are Kan. For the
time being, I think of the condition “Hom(X,Y ) is Kan” to be similar to the
condition “all weak equivalences between X and Y are actual equivalences.”
This obviously fails in the realm of topological spaces for instance, where a
weak equivalence X → Y need not be a homotopy equivalence. However!
We know of a way to make weak equivalences into “actual” equivalences—a
homological algebraist would tell us to “formally invert” all weak equivalences.
From a model category point of view, this is a two-step process in which we
replace X and Y by “good objects” (i.e., fibrant-cofibrant objects) and then
we look at Hom(RX,RY ), where RX and RY are the replacements of X and
Y . This is what I called, back in my first talk, the homotopy category of our
original category. So just as we could alter our categories into their simpler
homotopy categories, most of our favorite simplicial categories can be changed
to fit the Kan condition in the theorem. Another way to interpret this spirit is:
if we look at the full subcategory of all fibrant-cofibrant objects, our Hom-sSets
should satisfy the Kan condition.

(3) The Simplicial Nerve Just as the nerve of a category is a simplicial
set (it summarizes all the commutative information of our category), we can
construct something called the simplicial nerve of a simplicial category. (It
summarizes all the homotopy-coherent information of our category.) The con-
struction of this involved some annoying new definitions, so I won’t go into it
here. The spirit is, it serves the same purpose as the usual nerve, except it is
more relaxed—it doesn’t tell you that a diagram is commutative on the nose;
rather it tells you that a diagram is homotopically coherent.


