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1. Context for the Non-Abelian Hodge Theorem

1.1. One Historical Context. In 1978, Hitchin wrote a paper called “The
Self-Duality Equations on a Riemann Surface.” He was interested in solv-
ing a version of the self-dual Yang-Mills equations, which are equations
with origins in quantum field theory. Instead of looking for solutions in a
4-dimensional space (which is the original domain for the Yang-Mills equa-
tions), Hitchin looked at their solutions on Riemann surfaces. (The reduc-
tion to 2-D equations gives the Yang-Mills equations conformal invariance,
which means we can look for solutions on an arbitrary surface with complex
structure.)

Hitchin found that a solution to the Yang-Mills equation on a Riemann
surface X gives (1) a holomorphic vector bundle V over X, and (2) a holo-
morphic section Φ of EndV ⊗K. (This is the Riemann-surface case of what
we’d now call a Higgs bundle.) He gives the moduli space of solutions, M,
the structure of a smooth manifold, and proves it has a hyperkahler struc-
ture, which for our purposes means it comes with a natural family of complex
structures.
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Using one of these complex structures, he associates to each Higgs field a
connection. He shows that every Higgs field gives rise to a flat connection.

The punchline is: Looking at solutions to Yang-Mills equations, Hitchin
gave a way to relate Higgs bundles to vector bundles with flat connections.

From this viewpoint, the non-Abelian Hodge theorem is (1) a generaliza-
tion of this observation to arbitrary Kahler manifolds, and (2) a more precise
formulation of this correspondence. I read about the theorem in Simpsons’s
“Higgs Bundles and Local Systems,” in which he gives credit to Eels and
Sampson, Corlette, Donaldson, and others.

1.2. First non-abelian cohomology is just representations of π1. At
the same time, we’ve said that the non-Abelian Hodge theorem can be seen
as a statement about non-abelian cohomology. So let’s review that for a
moment.

As we discussed last class, people have thought about how to construct
cohomology with non-abelian coefficients. But the most obvious gateway
is doomed to failure. Namely, the sophisticated topologist’s definition of
cohomology, which says

Hk
sing(X;G) = π0 Maps(X,K(G, k))

does not have an obvious generalization for the case when G is non-abelian.
(K(G,n) is characterized by the property that πn is equal to G, so this
property cannot be satisfied if G is not commutative.) The generalization
does, however, make sense when k = 1. The interpretation of non-abelian
cohomology for a group G, then, is that

H1
sing(X;G) = π0 Maps(X,K(G, 1))

where of course K(G, 1) is a synonym for the classifying space BG. By a
famous relation between BG = K(G, 1) and G-bundles, this is the same as
looking at equivalence classes of flat G-bundles over X. So Hitchin’s result
about Higgs bundles and flat G-bundles over a Riemann surface, we see,
already relates Higgs bundles to the study of non-abelian cohomology. (At
least for the case of Riemann surfaces.)

In a nutshell, we’re just saying that Higgs bundles give information about
representations of π1(X) into a group G, and that ‘non-abelian cohomology’,
at least for H1, is the same thing as studying representations of π1 into G.
So in our discussions, ’non-abelian cohomology’ is just a fancy word for
representations of π1—it’s not a new concept, and it’s a phrase which just
helps people win grants. (The phrase ‘Non-abelian whatever’ tends to attract
attention.)

1.3. Three non-trivial isomorphisms. In our last talk, Sam emphasized
an equivalence between three cohomologies. They are

(1) Hn
B(X;C). Singular cohomology of X with coefficients in C. Sam

also called this Betti cohomology.
(2) Hn

deR(X;C). DeRham cohomology of X with coefficients in C.
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(3) ⊕p+q=nH
q(X; Ωp). Dolbeaut cohomology of X.

The isomorphism (1)↔(2), which holds when X is a smooth manifold,
is given by the DeRham theorem. The isomorphism (2)↔(3), which holds
when X is a Kahler manifold, is given by the Hodge theorem.

In the non-abelian setting, these three cohomologies are replaced by the
following objects.

(1) MB := Hn
B(X;G). Singular cohomology of X with coefficients in G.

This is the same thing as maps of X into BG, or representations of
π1X modulo G-conjugations. This is a purely topological invariant.

(2) MdeR. This is the moduli of smooth G-bundles with flat connection.
This lives in the world of smooth things.1

(3) MHiggs. This is the moduli of Higgs bundles on X. This is not a
concept that I expect everybody to know (I’ll talk about it in a sec-
ond), but it depends very much on holomorphic structures—a Higgs
bundle is a holomorphic vector bundle together with a holomorphic
1-form.

So we have three worlds again—(1) a topological world, (2) a smooth world,
and (3) a holomorphic world. The correspondence (1)↔(2) is given by the
Riemann-Hilbert correspondence, and the correspondence (2)↔(3) is the
topic of today’s talk. We’ll talk about it for the case where G = GL(n,C).
The equiavlence is given by the non-abelian Hodge theorem.

1.4. Analogy with ordinary Hodge Theory. The general idea you can
keep in your mind is as follows.

In ordinary Hodge theory, the Hodge theorem gives an isomorphism be-
tween the following:

Hn
deR(X;C)

DeRham cohomology of X
⇐⇒ Hq(X; Ωp)

Dolbeaut cohomology of X

The ultimate goal is to describe an equivalence between (2) and (3) above.
That is, to give an equivalence

MdeR(X)
Smooth bundles E with flat

connection D

⇐⇒
MHiggs(X)

Higgs bundles E with
associated operator D′′

which in this talk will be a bijection of sets. In classical Hodge theory, we
needed to choose a metric to relate the two boxes—we defined the notion
of a harmonic form, and show that harmonic forms give an intermediary
between DeRham cohomology classes and Dolbeault cohomology classes.

1I had a conversation with David, and he already thinks of these things as holomorphic
objections. That is, he thinks of holomorphic bundles with holormorphic, flat connec-
tions. This holomorphic version (which is nice because we can think of it in purely alge-
braic terms—and in particular over fields that aren’t C) is equal to the smooth version
is you believe that the Riemann-Hilbert correspondence holds in both the smooth and
holomorphic setting.
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Similarly, the relation between the two boxes in the non-abelian case will
be given by choice of metric. We will relate a bundle with flat connection
to a bundle with Higgs field by using harmonic bundles, which is a bundle
with a metric satisfying certain conditions.

1.5. The diagram above is naive. As it turns out, the equivalence we
prove today won’t be an equivalence as written down. We won’t hav all
Higgs bundles, but a certain type of them. Same with flat bundles–we won’t
have all of them when we write down the final equivalence.

1.6. Equivalent as what? I’ll make some commentary in the end to sug-
gest that this is an equivalence of categories, with appropriate notions of
morphisms between objects. As Simpson comments, perhaps the best we
can hope for is to think of left- and right-hand side as stacks, but I’m not
assuming that we’re familiar with stacks, so let’s leave that alone for now.

2. Definitions

Again, we’re dealing with everything in the case where G = GL(n,C).

2.1. The smooth world. Let X be a manifold. Let V → X be a smooth
vector bundles whose fibers are complex vector spaces, and D a flat connec-
tion on V . This means that D takes sections of V to 1-forms with values
in V , and that D2 = 0. If X is a complex manifold, we can split D into its
holomorphic and non-holomorphic part, and write

D = d1,0 + d0,1.

2.2. The holomorphic world. Let X be a complex manifold. Let E → X
be a holomorphic vector bundle, which means that all the transition maps
into GL(n,C) are holomorphic. A Higgs field on X is a map of bundles
θ : E → Ω1(X) ⊗ E, such that θ ∧ θ = 0. Let’s talk about what I actually
mean by this.

You can view θ as a holomorphic 1-form on X with values in End(E).
Since End(E) is a Lie algebra, we can define θ ∧ θ to be the 2-form whose
value on two vectors v, w is given by

θ ∧ θ(v ⊗ w) = [θ(v), θ(w)].

When E happens to be a line bundle, for instance, End(E) = E ⊗E∨ = C,
the trivial line bundle, so θ is just a holomorphic 1-form. When X is a curve,
the condition is vacuous, as there are no holomorphic 2-forms on a Riemann
surface.

Since there is a holomorphic structure on E, there is an operator ∂̄, not
to be confused with the operator ∂̄ on X. The operator ∂̄ takes holomorphic
sections of E to the zero 1-form, for instance. Hence we can take a look at
the operator

D′′ := ∂̄ + θ
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where the identity
(D′′)2 = 0

encapsulates the properties (1) ∂̄2 = 0, (2) θ is holomorphic, and (3) θ∧ θ =
0.

3. Construction

So we have two kinds of complex vector bundles. Pairs of the form (V,D)
will represent smooth vector bundles with D a flat connection. Pairs of
the form (E,D′′) represent holomorphic vector bundle with a Higgs field.
A natural question to ask is, which vector bundles admit both structures?
But this question seems a bit out-of-nowhere—in math, if we ask an object
to exhibit two properties, we have to ask how they’re related. So a better
question is—which vector bundles not only admit both structures, but also
a third structure which allows us to go back and forth between them? This
third structure is the notion of a harmonic metric.

In usual Hodge theory, the metric is used to construct a Laplacian. We’re
originally interested in things which satisfy equations like d = 0 or ∂̄ = 0,
and when we use the metric, we find that we can relate solutions via the
Laplacian.

In the proof of the non-abelian Hodge theorem, however, we might not
always find solutions to a “Laplacian” (I put this in quotes because the
differential equation we want to solve is not the Laplacian, but serves a
similar purpose). When a metric allows us to find such a solution, we call
the metric harmonic.

So let’s get down to it. How will a metric let us go back and forth between
the two worlds of flat bundles and Higgs bundles?

3.1. From flat to (possibly) Higgs. From a metric K and a flat connec-
tion D on smooth vector bundle V , we construct an operator D′′

K . When
(D′′

K)2 = 0, D′′
K determines the structure of a Higgs bundle.

First, write the flat connection D as a sum of a dz form and a dz form:

D = d1,0 + d0,1.

Then define operators δ0,1 and δ0,1 so that

d1,0 + δ0,1 and d1,0 + δ1,0

are both invaraint under K. From this, we can define four operators which
take sections of V to 1-forms with values in V .

∂K := 1
2(d1,0 + δ1,0) θK := 1

2(d1,0 − δ1,0)

∂̄K := 1
2(d0,1 + δ0,1) θK := 1

2(d0,1 − δ0,1).
We define the operator D′′

K to be

D′′
K := ∂̄K + θK .
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We see an easy

Lemma 3.1.1. If (D′′
K)2 = 0, then the operator ∂̄K defines a holomorphic

structure on V , and θK is a Higgs field. That is, (V,D′′
K) is a Higgs bundle.

Whether (D′′
K)2 = 0 depends on the choice of metric K on the bundle V .

Note that Simpson in his paper refers to (D′′
K)2 as an operator GK .

So a natural question to ask is, when does a flat vector bundle give rise
to a Higgs bundle? This is part 1 of the non-abelian Hodge theorem.

Theorem 3.1.2 (Corlette). A flat bundle V has a harmonic metric if and
only if it is semisimple. Moreover, this metric is unique.

The proof of this theorem is due to Corlette. It’s Theorem 3.3 in his
paper “Flat G-Bundles with Canonical Metrics.”2 As far as I understand,
the input is the complex structure of X, the smooth structure of V , and the
flat connection D. The unique output is the harmonic metric.

3.2. From Higgs to (possibly) flat. From a metric K and a Higgs bundle
(E,D′′) (here D′′ = ∂̄ + θ), we construct an operator DK .

Given a metric, we can ask for an operator ∂ such that

(∂e, f) + (e, ∂̄f) = ∂̄(e, f)

where the parentheses indicate the inner product given by K. We can also
take the adjoint θ of θ, so that

(θe, f) = (e, f).

Then we define the operator DK to be

DK := ∂ + ∂̄ + θ + θ.

This is an operator of mixed type (it is not purely (0,1) or (1,0)) and defines
a connection on the bundle E. So we can see easily

Lemma 3.2.1. If D2
K = 0, DK is a flat connection on the smooth vector

bundle E.

So when does a Higgs bundle E admit a metric K such that D2
K = 0?

Such a metric will be called a harmonic metric on the Higgs bundle E.
Classifying the Higgs bundle admitting such a metric is the second half of
the non-abelian Hodge theorem.

Theorem 3.2.2 (Simpson). A Higgs bundle E has a metric K such that
D2

K = 0 if and only if E is polystable and has vanishing chern classes.

This was proven by Simpson in 1988.3

Let’s explain some of the terminology, which I’d never heard of before
learning about this stuff. In algebraic geometry, every vector bundle E has

2Journal of Differential Geometry, 28 (1988) 361-382.
3“Constructing Variations of Hodge Structure Using Yang-Mills Theory and Applica-

tions to Uniformization,” Journal of the AMS, Vol. 1, No. 4 (Oct 1988), pp. 867-918.



A BABY VERSION OF NON-ABELIAN HODGE THEOREM 7

a degree and a rank. The degree is the degree of the top exterior line bundle
(i.e., the first chern class of the top determinant bundle), and the rank is
the dimension of the fibers. We say that a vector bundle E is stable if for
any subbundle M ⊂ E, we have that

degM

rankM
<

degE

rankE
.

We say that the quantity degE/ rankE is the slope of E.
If E is a Higgs bundle, we say that E is stable if this inequality holds for

all subbundles M such that θ|M yields a 1-form with values in M .
A polystable Higgs bundle is one which is a direct sum of stable Higgs

bundles, all having the same slope.

3.3. The upshot. It is easy to see that the two constructions above are
inverses to each other when we are in a harmonic setting. That is, the
composition

D 7→ D′′
K 7→ DK

is the identity, and likewise for the other direction.
So let us define a harmonic bundle to be a smooth bundle V together

with the structure of a Higgs bundle and a flat bundle, which are related to
each other by a harmonic metric. (The metric is not part of the data of the
harmonic bundle.)

Combining the two halves of the non-abelian hodge theorem, we would
like to say the following theorem.

Theorem 3.3.1. There is a bijection of sets between semisimple flat bundles
and polystable Higgs bundles with vanishing chern classes. We can find a
moduli space for both sets, where this bijection yields a homeomorphism.

Unfortunately, I haven’t seen in any of Simpson’s papers where he ex-
plicitly says that the harmonic bundle corresponding to a Higgs bundle
(polystable, with vanishing chern classes) is unique. So I yet don’t know
how to prove this theorem, even at the level of sets. If anybody could help
me out, that’d be great.


