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1 Introduction

Today I’d like to talk about three ways to get invariants out of a three-manifold. But
before we begin, I’d like to explain why three-manifolds are manageable in terms of
getting invariants out of them.

1.1 Why Three-Manifolds? Surgery.

It turns out that every closed, orientable 3-manifold can be obtained from S3 by per-
forming surgeries along links. This was proven independently by Wallace in 1960 and by
Lickorish in 1962, and it is known as the Lickorish-Wallace Theorem. So when we can
find an invariant for links in S3, we can hope to associate an invariant to the 3-manifold
obtained by performing surgery on the links. This is, as far as I understand, exactly
why the Casson-Walker-Lescop invariant and the LMO invariant are computable–there
are very explicit formulas on how to compare λCWL(M) to λCWL(M ′) if M ′ is obtained
from M by surgery along a link.

1.2 Surgery on a Knot, Surgery on Links

So what is surgery?
Let M be an integral homology 3-sphere, let k : S1 ↪→ M be an embedding. That

is, k is a knot in M . If we fatten k to get a solid torus, K, we can remove the
interior of the solid torus, then glue it back in by some homeomorphism of the boundary
torus. There are many possible homeomorphisms, but one number characterizes the
homeomorphisms very well. It is called the surgery coefficient of the surgery.
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Specifically, let γ ⊂ T 2 = ∂K be the generator for homology which vanishes when
the torus is filled by the solid torus. Let m be the curve on T 2 = ∂K ⊂ M which
generates H1(M −K) and let l be another curve satisfying the following: l together with
m generates H1(T

2), and l vanishes in H1(M −K).1 Then given a homeomorphism
h : T 2 → T 2, we can look at the element that γ is sent to. That is, we can write
h∗(γ) = p[m]+q[l] where p, q are integers. The ratio p/q is called the surgery coefficient.

A knot, together with a ratio p/q, is called a framed knot. A finite collection of
knots, each framed, is called a framed link.

Given a knot K in an integral homology 3-sphere M , I’ll let M + 1
n
k denote the

manifold obtained by performing (1, n) surgery along the knot k.2 The original Casson
invariant λ was easy to compute because it satisfied the following formula:

λ(M +
1

n
k)− λ(M +

1

0
k) =

n

2

d2

dt2
∆(1).

Here, ∆(t) is the Alexander polynomial of the knot k, and (1, 0) surgery is defined
as performing no surgery at all. Already, if you know something about Alexander
polynomials, we can begin to compute the Casson invariants for certain three-manifolds.

1.3 An Overview of the Invariants

There are three invariants I’d like to talk about today, each obtained in a different way.
I can summarize the three invariants in a diagram as follows:

So let me take a moment to explain what this diagram shows.

1Such an l can be obtained by taking a Seifert surface for k, then intersecting the surface with ∂K.
2It is not hard to show using basic topology that (1, n) surgery always yields an integral homology

3-sphere.
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1.3.1 The Casson-Walker-Lescop Invariant, λCWL

The lower-right outskirt of the diagram represents the invariants we can obtain from
3-manifolds by looking at a Heegard decomposition of a three-manifold. Once we de-
compose a 3-manifold into two handlebodies, we can look at the representation spaces
of their fundamental groups.3 Computing the intersection number of the representation
spaces gives the numerical invariant. The main difficulty is showing that the intersection
of two-non-compact, possibly singular submanifolds is in fact compact after removing
singularities. This was first done by Casson, in 1985, for the case when the manifold M
is an integral homology three-sphere. The invariant was extended further in 1992 by
Walker for the case of rational homology three-spheres (i.e., the first homology only has
torsion), and finally extended to define a numerical invariant for all closed, orientable
three-manifolds by Lescop in 1995.

R(W1, p)

R(∂D2, p) �� R(Σg −D2, p) � ⊃ R(Σg, p)
�

⊃

R(M, p)

�

⊃

R(W2, p)
�

⊃�

⊃

Above is the diagram commonly drawn to summarize the representation spaces we
study. I haven’t explained what any of the symbols in this diagram means, so don’t be
worried. I’ll get to it.

1.3.2 The Chern-Simons Action

On the very left of our big diagram we have the Chern-Simons action. This is a function
we can put on the space of all connections associated to a principal G-bundle. For 3-
manifolds, we often take G = SU(2), where for topological reasons any SU(2) bundle
on a 3-manifold is trivial. 4 It so happens that the Chern-Simons action gives a circle-

3It is simple to see that for any topological group G, the set of possible representations H → G (H
a finitely presented group) can be given a topology. I will be explaining this later.

4From topology we know SU(2)-bundles are classified by BSU(2), but πi(BSU(2)) = 0 for i ≤ 3.
So any map of a 3-manifold into BSU(2) is homotopic to some trivial map.
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valued Morse function on the space of connections modulo actions of the Gauge group.
The action, for a given connection A ∈ Ω1(M, su(2)) is defined to be

cs(A) =

∫
M

tr(A ∧ dA +
2

3
A ∧ A ∧ A).

The critical points of the gradient flow associated to this functional are precisely the flat
connections. If we try to look at the Morse complex obtained from this Chern-Simons
action, we get the bottom-middle part of the diagram. The Atiyah-Floer conjecture,
which I’ll describe in the end, predicts an intimate relationship between this Morse
complex and another complex associated to the representation spaces we study on the
lower-right corner of the diagram.

If, instead of passing straight to Morse theory, we try to look at the Partition
function given by exponentiating the Chern-Simons action, we enter the realm of per-
turbative methods and path integrals. It was suggested by Witten in 1989 that the
integral

Zk(M, G) =

∫
eikcs(A)

taken over the space of connections on a principal G-bundle over a three-manifold M ,
would be a topological invariant of M . I don’t think mathematicians still have a fully
satisfactory way of justifying integration over this infinite-dimensional space. By some-
how changing this integral into the language of the algebra of chord diagrams, we obtain
the LMO invariants. The LMO invariant Ω(M) is an element of the chord diagram al-
gebra, and each coefficient of the element gives us a numerical invariant.5 Le, Murakami
and Ohtsuki showed that the first-degree part recovers the Casson-Walker-Lescop in-
variant. Owen’s talk hinted at the background necessary to connect the physicists’ path
integrals to the graph algebras we’re interested in.

My goal in these notes is to focus on the Casson invariant, as originally defined
for homology 3-spheres. I’m afraid I don’t know enough to fully exposit on the LMO
invariant or the Atiyah-Floer conjecture.

5The chord diagram algebra is a bit involved to define, and I don’t fully understand it. I am also
still trying to understand how we go from the partition function to an invariant for knots; studying
this relationship is part of my summer goals.
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2 The Casson Invariant

2.1 Some Formal Properties, and Two Examples

Before I tell you how to define the Casson invariant, I’d like to list some properties of
the Casson invariant. These are of course all properties of the Casson-Walker-Lescop
invariant as well, when restricted to the case where M is an integral homology sphere.6

1. λ(S3) = 0.

2. Let K be a knot in an integral homology sphere M , and let M + 1
n
k denote

the manifold obtained by performing (1, n) surgery on k. Then λ(M + 1
n
k) −

λ(M + 1
n+1

k) is independent of n. In fact, if ∆(k) is the (normalized) Alexander
polynomial of k, then

λ(M +
1

n
k)− λ(M +

1

0
k) =

n

2

d2

dt2
∆(1).

3. If −M is M with the opposite orientation, λ(M) = −λ(−M).

4. The invariant is additive over connect sums: λ(M1]M2) = λ(M1) + λ(M2).

5. If µ(M) denotes the signature7 of a spin 4-manifold with boundary M , then
4λ(M) = µ(M) (mod 16).

As it turns out, properties (1) and (2) completely determine the invariant. Similar
formulas hold for the Casson-Walker-Lescop invariant, but factors depending on the
Betti numbers and the torsion of H1(M) begin to show up.

Example The most famous integral homology sphere is probably the Poincare homol-
ogy sphere, which was constructed by Poincare himself to help him refine the Poincare
Conjecture. It is constructed by taking the solid dodecahedron, and then gluing oppo-
site faces after a 1/5 counter-clockwise turn. There are other ways to construct this
space:

6A note on terminology. I’ll use the word “Casson invariant” for the invariant defined for integral
homology 3-spheres. The CWL invariant is the invariant defined for all closed, orientable 3-manifolds,
and gives the same information as the Casson invariant when the CWL invariant is restricted to integral
homology 3-spheres.

7For any 4n-dimensional manifold, the intersection product defines a symmetric bilinear form on
H2n. The signature of the manifold is the signature of this form—that is, the number of positive
eigenvalues minus the number of negative eigenvalues.

5



1. This space can also be written as the quotient of SO(3) by the icosahedral group
(the group of isometries of the icosahedron or dodecahedron), which is isomorphic
to the fifth alternating group, A5.

2. This space also turns out to be homeomorphic to the Brieskorn sphere Σ(2, 3, 5).
In general, a Brieskorn 3-sphere Σ(p, q, r) is defined as the intersection of S5 with
the complex algebraic variety xp + yq + zr = 0. That is,

Σ(p, q, r) = {xp + yq + zr = 0} ∩ S5 ⊂ C3.

If any of p, q, r is equal to 1, this space turns out to be homeomorphic to S3. If
the p, q, r are pairwise coprime, we always get a homology 3-sphere.8

3. The Poincare homology sphere, Σ(2, 3, 5), is also obtained by performing (−1)
surgery on the left-handed trefoil knot in S3.

It is this last construction which allows us to compute the Casson invariant for this
homology 3-sphere. The Alexander polynomial9 for the trefoil knot is ∆(t) = t− 1 + 1

t
.

So we see that the Casson invariant is −1
2

∆′′(1) = −1
2
· 2 = −1.

This examples also allows us to distinguish between two manifolds that we could not
distinguish just from homology and the fundamental group. Using the above properties,
we can compare λ(Σ(2, 3, 5)]Σ(2, 3, 5)) and λ(Σ(2, 3, 5)]− Σ(2, 3, 5)). We see that

λ(Σ(2, 3, 5)]Σ(2, 3, 5)) = −1 +−1 = −2

while
λ(Σ(2, 3, 5)]− Σ(2, 3, 5)) = −1 + 1 = 0.

Hence these two manifolds are not homeomorphic! 10

Example This example is mainly for Mike Skirvin, who I know has thought about
Milnor fibers.

8It’s my understanding that, in general, we can look at Brieskorn spheres in higher dimensions, by
looking at solutions to

∑n
i=1 xpi

i = 0 in Cn and taking an intersection with S2n−1.
9I think there are some different conventions on how to ‘normalize’ the Alexander polynomial.

In general, the polynomial is ambiguous up to multiplication by tn, and for instance, an article in
Wikipedia defines the polynomial for the trefoil to be t2− t+1. The normalization that Casson adopts
is for ∆(t) = ∆(t−1) and ∆(1) = 1.

10This example was mentioned in Saveliev’s book, ”Invariants for Homology 3-Spheres”, in section
3.4.6. In fact, we can note that for any homology 3-sphere M with λ(M) 6= 0, we can deduce that
M]M and M]−M are not homeomorphic.
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We can define a function f : C3 → C given by f(x, y, z) = xp +yq +zr. We can then
take the function φ = f

|f | , which we’ll restrict to S5 − Σ(p, q, r). Milnor showed that
this map is a fiber bundle over the circle with fiber smooth and simply connected. The
compactification of this fiber is a smooth manifold F (p, q, r), called the Milnor fiber of
φ, and it has boundary Σ(p, q, r).

Then Fintushel and Stern showed in 1990 that

λ(Σ(p, q, r)) = sign(F (p, q, r))/8

where sign(F ) is the signature of F . In particular, we see that many of these Milnor
fibers are not spin manifolds in light of property (5), regarding spin manifolds. In fact,
if the Milnor fiber is spin, some simple arithmetic shows that the Casson invariant of
Σ(p, q, r) must be zero mod 4. In particular, the Milnor fiber associated to Σ(2, 3, 5) is
not spin.11

2.2 The Construction, a Brief Overview

2.2.1 The Heegard Decomposition of a 3-manifold

Let Σg be a surface of genus g sitting in R3. Fill it in with jelly so we get a three-manifold
W whose boundary is Σg. Such a three-manifold is called a handlebody.

Let’s say we have two homeomorphic handlebodies, W1 and W2. Then we can
glue the boundary of one onto the boundary of the other by some homeomorphism
h : Σg → Σg. If a three-manifold M can be obtained by such a construction, we say that
(W1, W2, g) is a Heegard splitting of M . We may also call it a Heegard decomposition.

Example There is a well-known decomposition of M = S3 into a Heegard decom-
position consisting of two surfaces of genus 1 (i.e., two tori). The homeomorphism
interchanges the longitudinal and meridianal curves of the torus.

There is a deep theorem, due to Moise (proved sometime between 1949 and 1951)
that every 3-manifold admits a triangulation. By taking a tubular neighborhood of the
one-skeleton of a triangulation, one can obtain a Heegard decomposition of the manifold.
(This is not obvious.) Hence, every 3-manifold admits a Heegard decomposition.12 It

11There is another way to see that some Milnor fibers are not spin by using the Rokhlin Theorem,
which states that if X is spin and four-dimensional, then its signature is zero mod 16. Using Rokhlin’s
Theorem and the Fintushel-Stern formula, we see that Σ(p, q, r) must have even Casson invariant if
the associated Milnor fiber is to be spin. Of course, we get more information (that the invariant must
be divisible by four) if we use property (5) from above.

12I think there is another proof of this using simple Morse Theory.
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can be shown that all Heegard decompositions are stabley equivalent—while a priori
the construction of the Casson invariant may depend on the Heegard decomposition, it
is this stable equivalence which guarantees that the Casson invariant is well-defined for
a three-manifold.13

Also, given a Heegard splitting, we can determine the fundamental group and the
first homology of M . We note that we obtain W1 from Σg by attaching discs to the
longitudinal generators bi, then attaching a 3-ball to the interior of the resulting 2-
complex. Then to attach W2, we fill in discs on h−1(b′i), where the b′i are the longitudinal
curves on W2, then attach a 3-ball to the resulting 2-complex. So knowing which curves
are sent to bi fully determines the fundamental group of M , and in particular, the
inclusion Wi ↪→ M induces a surjection on fundamental groups.

2.2.2 The Representation Space R(G).

Given a finitely presented group G, we can associate a real algebraic variety to it. This
is the space of representations of the group G into SU(2).

Let {g1, . . . , gn} be generators for G, and let φ : G → SU(2) be a representa-
tion of G. Then we can look at the points φ(gi) ∈ (SU(2))n. If G is presented as
〈g1, . . . , gn | fi(g1, . . . , gn) = 1〉, then the points φ(gi) must satisfy the relations fi. By
associating SU(2) with the unit quaternions, these fi then guarantee that the φ(gi) are
points which sit on zero sets of certain algebraic equations. In other words, regarding
fi as algebraic equations, the set of all representations of G can be written as the set
of all points in (SU(2))n satisfying the equations fi. So R gives a contravariant functor
from finitely presented groups to topological spaces.14

Now, given a manifold M , we can look at the space R(π1(M)). Obviously, this space
tells us very little about M—any two manifolds with the same fundamental group will
give the same representation space. However, the Casson invariants take advantage of
another geometric piece of information—3-manifolds admit Heegard decompositions.

13Once we have a Heegard splitting, we can keep attaching solid 1-handles to handlebodies, in a
trivial way, to obtain higher and higher-genus splittings. (The genus of a splitting is the genus of ∂W .)
We say that two splittings are stably equivalent if we can add enough handles to each splitting to
eventually obtain two decompositions which are equivalent via ambient isotopy. That every Heegard
decomposition is stabley equivalent is a theorem due to Singer, and I don’t know why it’s true.

14Actually, the target category can be made more specific. It’s not hard to see that all maps of
groups are mapped into polynomial maps from one representation space to another, so the target
category is more accurately the category of real algebraic spaces with algebraic maps.
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2.2.3 The Construction

The following diagram is a commutative diagram—the diamond to the right is Van
Kampen’s theorem, and the tail on the left is obtained by simple inclusions.

π1(W1, p)

π1(∂D2, p) ⊂- π1(Σg −D2, p) -- π1(Σg, p)

--

π1(M, p)

--

π1(W2, p)

--

--

Here, p is a point chosen to lie on the boundary of a disc D2 ⊂ Σg. It is clear from
the discussions above that all the inclusion maps on the right-hand diamond induce
surjections on the fundamental groups.

So now we can apply the representation space functor, R, to get the following
diagram:

R(W1, p)

R(∂D2, p) �� R(Σg −D2, p) � ⊃ R(Σg, p)
�

⊃

R(M, p)

�

⊃

R(W2, p)
�

⊃�

⊃

While Hom functors generally take all surjections into inclusions, it is at first unclear
why the tail map should be a surjection. After some thinking, one can prove that it is
indeed a surjection as we’ve indicated. Also, we note that R(M, p) = R(W1) ∩ R(W2).
One inclusion is obvious, for any representation of π1(M) must land in the intersection of
the two representations given by W1 and W2. The other inclusion is also straightforward,
for if a representation of the surface group is compatible with the gluing of the two
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handlebodies, then it can be realized as a representation of π1(M). (Just note that one
of the two inclusions from Wi is not induced by a dumb inclusion–it is induced by the
inclusion of Σg by applying the homeomorphism h.)

Of special interest to us is the left-most map, which we will call δ. We note that
the pre-image of 1 ∈ R(∂D2)—that is, the pre-image of the trivial representation–is
precisely the space of representations R(Σg). This is because of the map on fundamental
groups induced by ∂D2 ↪→ Σg − D2. So if we ignore singularities, the map δ|R(σg) is a
submersion, and it is a manifold of dimension 6g-3.15

Now, it turns out that the singular set S of the map δ is precisely the set of reducible
representation of π1(Σg−D2). So if we consider the spaces R(Σg−D2)−S, R(W1)−S,
and R(W2) − S, the natural conjugation action of SO(3) on R(π1) is a free action.
This gives us three spaces—a large space of dimension 6g − 6, and two small spaces of
dimension 3g−3. It takes some effort, but we can show that the intersection of the two
small spaces is compact in the large space. The algebraic intersection number of these
two spaces is called the Casson invariant of the manifold M .

3 Closing. The Atiyah-Floer Conjecture

There is more we can do. It has been proven, by Taubes, that for the case of integral
homology 3-spheres, there is a strong connection between the three invariants I men-
tioned in the beginning. By computing the euler characteristic of the Morse complex
associated to the Chern-Simons action, it turns out that we can recover the Casson
invariant!

The Atiyah-Floer conjecture asks for something deeper. The three spaces we took
above have a special property–they can be given the structure of two Lagrangians sitting
in a symplectic manifold. (One often thinks not just of representation spaces, but spaces
of flat connections. This is not so difficult a transition, because flat connections give
precisely representations of fundamental groups.) So it is natural to ask about the
Floer complex associated to these two Lagrangians. On the other hand, there is a chain
complex obtained by Morse Theory on the space of all connections. The Atiyah-Floer
conjecture asks for a quasi-isomorphism between these two complexes.

15The dimension of R(Σg − D2) is 6g, since we can send the 2g generators however we want (the
fundamental group is a free group.) Since the target space is a space of dimension 3, the pre-image of
a regular value is dimension 6g-3.
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