
Reading 26

Euler characteristic

There was a time in topology where we thought that all invariants were
numbers, not groups.

We will travel back in time today. The particular numbers we will study
– the Euler characteristic – is still a very important invariant.
Remark 26.0.1. It was Emmy Noether who pointed out that the old topolo-
gists’ program to “arithmetize” topology (i.e., turn everything into numbers)
would not be nearly as powerful, or natural, as studying groups associated
to spaces. Her insights motivated the foundations of homology.

26.1 Working over Q
Suppose that A = (Ai, ˆi)iœZ is a chain complex such that:

• For every i, the abelian group Ai is isomorphic to a direct sum of copies
of Q.

Now, Q is a very special field.1 Any abelian group isomorphic to QüA for
some set A is automatically a Q-vector space. It turns out that any abelian
group homomorphism Q æ Q is automatically Q-linear.2 More generally,
any abelian group homomorphism

QüA æ QüB

1Q is a field because every non-zero element has a multiplicative inverse.
2
Proof: If f is an abelian group homomorphism and r/s is a rational number, then

sf((r/s)x) = f(s(r/s)x) = f(rx) = rf(x). Scaling by 1/s, we conclude that f((r/s)x) =

(r/s)f(x).
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(where A and B are sets – not necessarily finite!) is also automatically Q-
linear. Put another way, any abelian group homomorphism between Q-vector
spaces is automatically a map of Q-vector spaces.

Remark 26.1.1. The above properties are not true for the field R. Indeed,
there are many abelian group homomorphisms R æ R that are not R-linear.
(This is a rather subtle fact to prove. If you take for granted that R is a
vector space over Q, and that R admits a basis as a vector space over Q, then
the claim is evident by permuting a Q-basis.) And, because there are many
abelian group automorphisms of R that are not R-linear, it follows that the
existence of an abelian group isomorphism A ≥= RüA does not guarantee a
unique R-linear structure on A. In particular, an abelian group being R-
linear is not a property of an abelian group; it is extra data/structure on
it.

Definition 26.1.2. Any chain complex A whose abelian groups Ai are direct
sums of Q will be called a rational chain complex, a chain complex over Q,
or a Q-linear chain complex.3

As mentioned, if QüA æ QüB is an abelian group homomorphism, it is
also a Q-linear map. As a result, the kernel is also a Q-vector space, the
image is a Q-vector space, and quotient groups are also Q-vector spaces. It
follows that if A is a Q-linear chain copmlex, then all the homology groups
of A are also Q-vector spaces.

There are particulary nice kinds of chain complexes that deserve a name.
(The following is fairly modern terminology, so does not appear in all text-
books.) Recall that any chain complex A has a notion of homology – the ith
homology group of a chain complex is defined to be Hi(A) := ker(ˆi)/ im(ˆi+1).

Definition 26.1.3. Let A be a chain complex over Q. We say that A is a
perfect chain complex (over Q) if the direct sum

n

iœZ
Hi(A)

is finite-dimensional over Q. In other words, A is perfect if the direct sum
of all the homology groups of A is isomorphic to a direct sum QüN for some
(finite) integer N .

3
All three terms are very common in the literature.
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Remark 26.1.4. If A is Q-linear, A being perfect is equivalent to requiring
both of the following:

1. For every i œ Z, there exists some integer ni so that Hi(A) ≥= Qüni .

2. There are only finitely many i for which Hi(A) ”≥= 0.

26.2 Euler characteristic of a chain complex
If an abelian group V is isomorphic to a direct sum Qün, we call n the
dimension of V (over Q). It is a fact from linear algebra that dimension is
well-defined. We often denote the dimension of V over Q by

dimQ V.

Definition 26.2.1. Suppose A is a perfect chain complex over Q. Then the
Euler characteristic of A is the alternating sum

ÿ

iœZ
(≠1)i dimQ Hi(A).

Exercise 26.2.2. Suppose that A is a Q-linear chain complex satisfying the
property that ÿ

iœZ
dimQ Ai < Œ.

Prove that the following two numbers are equal:

(a) The sum q
iœZ(≠1)i dimQ Ai.

(b) The sum q
iœZ(≠1)i dimQ Hi(A).

To do this exercise, it may help to recall that for any vector space map
f : U æ V , we have that dim U = dim ker f +dim im f. This fact also implies
that when W µ V is a subspace, then dimQ(V/W ) = dimQ V ≠ dimQ W .

26.3 Euler characteristic of a space
Suppose that X is a topological space, and that

ÿ

iœZ
dimQ Hi(X;Q)
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is finite.4

Definition 26.3.1. For X a space as above, the Euler characteristic of X

is the alternating sum

‰(X) :=
ÿ

iœZ
(≠1)i dimQ Hi(X;Q).

As indicated, we often write ‰(X) for the Euler characteristic of X.5

Exercise 26.3.2. (a) For every n Ø 0, compute the Euler characteristics
of S

n.

(b) More generally, suppose that X is a wedge sum of k n-dimensional
spheres. Compute the Euler characteristic of X.

26.4 Euler characteristic for finite CW com-
plexes

It is true that, often, one must compute the homology groups of a space to
compute its Euler characteristic. (After all, that’s how the Euler character-
istic is defined!)

However, when X is a CW complex with finitely many cells, there is a
much easier way to compute the Euler characteristic of X.

Definition 26.4.1. Let X be a CW complex. We say X is a finite CW
complex if X has only finitely many cells – that is, if the disjoint union

·

kØ0
Ak

of the sets of k-cells is a finite set.
4
Note that we are taking homology with coe�cients in Q. It turns out that homology

with coe�cients in Q is always a Q-vector space; this is most easily seen if you take singular

homology to be your model.
5
This is because ‰ is the Greek letter chi, making the hard “ch” or “k” sound in

characteristic.
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Exercise 26.4.2. Suppose X is a finite CW complex. Using Exercise 26.2.2
and cellular homology (over Q) show that

‰(X) =
ÿ

iœZ
(≠1)i#Ai

where #Ai is the number of i-cells in X.

Exercise 26.4.3. Compute the Euler characteristic of RP
n for every n Ø 0.

26.5 Algebraic miscellany
You may wonder about the jump from homology with coe�cients in Z to
homology with coe�cients in Q. It turns out that one can recover the latter
from the former.

Indeed, it is a theorem6 that

Hi(X;Z) ¢ Q ≥= Hi(X;Q).

Here, the ¢ symbol is the tensor product of abelian groups, which you may
not have learned about. It is part of a graduate curriculum in algebra.

When B is a finitely generated abelian group, so that

B ≥= ZüN ü T

for some torsion subgroup T and some integer N Ø 0, it turns out that

B ¢ Q ≥= QüN
.

Indeed, this isomorphism involving the tensor product is one way to prove
that the integer N above is well-defined!

N is often called the rank of the abelian group B.

6
A consequence of the universal coe�cietn theorem for homology, which we have not

discussed.


