
Reading 25

Singular homology

For simplicity, we will take our coe�cient group A to equal Z in this read-
ing. The reader wishing to generalize may replace every instance of the free
abelian group ZüS with the direct sum abelian group A

üS. The only reason
to stick with Z in this reading is to be use the term “free abelian group” for
the group ZüS, a term which is useful to know anyway.

(In contrast, there is no pithy name for A
üS when A is an arbitrary

abelian group. When R is a ring, we call R
üS a free R-module generated by

S.)

25.1 Free abelian groups
Let S be a set.

Notation 25.1.1 (Direct products). We let Z◊S, otherwise denoted by r
S Z,

denote the direct product of Z with S copies of Z.
So an element a of Z◊S is an S-indexed collection of integers

a = (as)sœS.

Put another way, Z◊S is the set of functions from S to Z, with as being the
value of the function at s œ S.

This has a component-wise group structure:

(a + b)s = as + bs.

The identity element of this group is the constant function sending every
s œ S to the identity element of Z (i.e., to zero).
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Notation 25.1.2 (Direct sum). We let ZüS denote the subset of Z◊S con-
sisting of functions S æ Z where only finitely many s œ S have non-zero
values.

We call ZüS the S-indexed direct sum of Z. We will also refer to ZüS

as the free abelian group generated by S. We may sometimes write the free
abelian group by

Z[S] or ZS.

Example 25.1.3. If S = {1, 2, 3}, then Z◊S ≥= Z◊Z◊Z is the group whose
elements are triplets of integers, and addition is vector addition:

(a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3).

The set ZüS is the same set as Z◊S.

Example 25.1.4. Let S = N = {0, 1, 2, 3, . . .}. Then Z◊S is the collection
of all sequences a of integers indexed by the natural numbers:

a = (a0, a1, a2, . . .) = (an)nœN.

Addition is component wise, so

a + b = (a0 + b0, a1 + b1, . . .) = (an + bn)nœN.

The above a is an element of ZüN if and only if all but finitely many an are
non-zero.

Exercise 25.1.5. Verify that ZüS is indeed a subgroup of Z◊S. If S is finite,
show that the inclusion ZüS æ Z◊S is an isomorphism.

When S is not finite, show that the inclusion is not a surjection.

25.2 Simplices and their face inclusions
Recall that the n-dimensional simplex is the set

�n := {(x0, . . . , xn) œ R1+n |
nÿ

i=0
xi = 1 and each xi is non-negative.}

Now, for every 0 Æ i Æ n, there is a natural inclusion

”i : �n≠1 æ �n
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which sends the element (x0, . . . , xn≠1) to the element

(x0, . . . , xi≠1, 0, xi, xi+1, . . . , xn≠1) œ R1+n
.

In other words, ”i(x) is the element of R1+n obtained by the natural identifica-
tion of Rn with the subset of R1+n consisting of vectors whose ith coordinate
equals zero.

Exercise 25.2.1. Recall that when n = 1, 2, 3, the n-simplex is an edge, a
triangle, and a tetrahedron, respectively.

Verify that the maps ”i with codomain �n for n = 1, 2, 3 have images
given by the faces of these shapes.

Exercise 25.2.2. Show that for two integers i, j with 0 Æ j Æ n ≠ 1 and
0 Æ i Æ n,

”i ¶ ”j =

Y
__]

__[

”j+1 ¶ ”i if i < j

”j ¶ ”i≠1 if i > j

”j ¶ ”i = ”j+1 ¶ ”i if i = j

Definition 25.2.3. Let X be a topological simplex and fix an integer n Ø
0. A singular n-simplex, or a singular simplex of dimension n, of X is a
continuous function

�n æ X.

Remark 25.2.4. The word singular is a bit of an artifact – it refers to the
fact that the continuous function does not need to be particularly “nice” –
for example, it need not be an injection. So the image of a singular n-simplex
may, indeed, look rather “singular.”

In fact, there is a branch of topology (combinatorial topology) in which
every space is thought of as a collection of simplices, and one might only
study maps �n æ X that naturally identify �n with a given n-simplex of
X (i.e., “simplicial maps”). From the perspective of combinatorial topology,
an arbitrary ‡ can indeed seem very singular – ‡ need not respect anything
about X’s combinatorial structure.

Remark 25.2.5. Let ‡ : �n æ X be a singular simplex (of dimension n).
Then ‡ defines n + 1 other singular chain complexes as follows. For every
0 Æ i Æ n, consider the composition

�n≠1 ”i
// �n ‡

// X.
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Because the inclusion ”i is continuous, the composition of the above maps is
continuous. Thus each ‡ ¶ ”i defines another singular simplex (of dimension
n ≠ 1) in X.

Definition 25.2.6. Given an n-simplex ‡ : �n æ X, we let

ˆi‡

denote the map ‡ ¶ ”i. We call ˆi‡ the ith face of ‡.

25.3 The singular chain complex
We now define the chain complex of singular chains, or the singular chain
complex of X. The point is that this chain complex’s homology will compute
the homology of X (with coe�cients in Z, or with coe�cients in A if you
replace every instance of Z

üS with A
üS.).

Definition 25.3.1. Let X be a topological space. Fix n Ø 0, and let
Sing

n
(X) denote the set of singular n-simplices of X.

The abelian group of singular n-chains of X, denoted Cn(X) or Cn(X;Z),
is

ZüSingn(X)
.

That is, we take Cn(X) to be the free abelian group generated by Sing
n
(X).

Remark 25.3.2. Sing
n
(X) is, generally, a gigantic set. For example, if X

has the trivial topology (meaning the only open sets are ÿ and X itself) then
Sing

n
(X) is the set of all possible functions from the set �n to the set X.

When n Ø 1 (and X still has the trivial topology) and X has the cardinality
of R (which is the case for interesting spaces that embed in Euclidean space),
this set has cardinality strictly larger than that of X.

In particular, Cn(X) = ZüSingn(X) is also a very big-looking set.
This means that is is impossible to undrestand Sing

n
(X) and Cn(X) too

concretely, but as usual, the abstraction becomes powerful if we decide to
use the largeness of Cn(X) in a useful way.

An element of Cn(X) is called a singular chain (on X). Informally, one
can think of an element of Cn(X) as a finite linear combination

ÿ

–œA

a–‡–
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where A is a finite set, each a– is an integer, and ‡– : �n æ X is a singular
n-simplex of X.

Remark 25.3.3. “Formal linear combination” is a very common description.
A more concrete/rigorous definition is the one we’ve already given of free
abelian group: An element of Cn(X) is a function Sing

n
(X) æ Z which is

non-zero on at most finitely many ‡.

Definition 25.3.4. We define the nth di�erential of the singular chain com-
plex as follows.

Given a singular n-simplex ‡ : �n æ X, let us abuse notation and identify
with the element of Cn(X) whose ‡-coordinate is 0 and all other coordinates
are 0.

Then we define
ˆn‡ =

nÿ

i=0
(≠1)i

ˆi‡.

That is, the di�erential of ‡ is a linear combination of all the faces of ‡, with
a sign (≠1)i accompanying the ith face.

By linearity, this defines the di�erential

ˆn : Cn(X) æ Cn≠1(X),
ÿ

–œA

a–‡– ‘æ
ÿ

–œA

ÿ

0ÆiÆn

(≠1)i
a–ˆi‡–.

Exercise 25.3.5. Show for all n Ø 0 that ˆn+1 ¶ ˆn = 0. Make sure you pay
attention to the signs.

Notation 25.3.6. The singular chain complex of X, or the complex of sin-
gular chains of X, is the chain complex given by the abelian groups Cn(X)
(n Ø 0) and di�erentials ˆn (n Ø 0).

We often wrote the whole chain complex as the pair

(C•(X), ˆ)

or just
C•(X)

with the di�erential implicit.

Definition 25.3.7. Let X be a topological space. The kth homology of the
singular chain complex is defined to be the kth singular homology of X. We
will often denote this by

H
Sing
n

(X).
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25.4 Geometric interpretation of singular ho-
mology

Picture in class!

25.5 Computing singular homology for a point
It is typically impossible to compute singular homology from scratch unless
there are very few continuous maps to X. (For example, X might be a finite
set.)

Exercise 25.5.1. Compute all the singular homology groups of X = pt.

25.6 Functoriality of singular homology
Let f : X æ Y be a continuous function. Then any singular simplex

‡ : �n æ X

post-composes to a singular simplex

f ¶ ‡ : �n æ Y.

Thus, for every continuous function f : X æ Y , for every n Ø 0, we have a
map of abelian groups

Cn(X) æ Cn(Y )
by sending ÿ

a–‡– ‘æ
ÿ

a–(f ¶ ‡–).

Exercise 25.6.1. Using that composition of functions is associative, show
that

ˆi(f ¶ ‡) = f ¶ (ˆi‡).

Exercise 25.6.2. Show that for every n Ø 1, the diagram

Cn(X) //

ˆn

✏✏

Cn(Y )
ˆn

✏✏

Cn≠1(X) // Cn≠1(Y )
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commutes. (Here, the horizontal arrows are the maps sending ‡ to f ¶ ‡.)
Conclude that the map sending each singular simplex ‡ to f ¶‡ is a chain

map.
Conclude that each continuous function f : X æ Y induces a map on

singular homology
fú : H

Sing
n

(X) æ H
Sing
n

(Y ).

Exercise 25.6.3. Let f : X æ Y be a continuous function and let fú denote
the induced maps on singular homology from the previous exercise. Show
the following:

(a) For all spaces X and for all n Ø 0, (idX)ú = idHn(X).

(b) For all continuous maps f : X æ Y and g : Y æ Z, we have

(g ¶ f)ú = gú ¶ fú.

25.7 Singular homology satisfies all the ax-
ioms of a homology theory

In this reading we have only proven that the dimension axiom (the homology
of a point is Z in degree 0, and zero elsewhere) and the functoriality axiom.

The other axioms (Mayer-Vietoris, homotopy invariance, naturality) are
much more involved to prove. It is left as extra credit in this course, but I
am happy to answer any questions about it, as usual.

Because computations of homology for CW complexes only depended on
the axioms of homology, we have the following:

Theorem 25.7.1. Let X be a CW complex. Then for all abelian groups A

and for all n Ø 0, H
Sing
n

(X; A) ≥= Hn(X; A).

In other words, singular homology and (axiomatic) homology are isomor-
phic for CW complexes. Of course, this also implies that cellular homology
is also singular homology.

Remark 25.7.2. The axioms we have used for homology are a variant of the
famous Eilenberg-Steenrod axioms for homology. (The Eilenberg-Steenrod
axioms typically use excision instead of Mayer-Vietoris as an axiom.)


