Singular Homology
Before: (axiomatic) homology \rightarrow took as axioms $\left.\begin{array}{rl}H_{*}(p t) \cong H_{0}(p t) \cong A \\ f_{\sim} \sim g & \Rightarrow f_{*}=g_{*}\end{array}\right\} \begin{aligned} & \text { didnnt } \\ & p \text { rove }\end{aligned}$ $\left.\begin{array}{l}\text { } f^{*} \sim g \Rightarrow f_{*}=g_{*} \\ \text { MV }\end{array}\right\} \begin{aligned} & \text { diduratit } \\ & \text { prove }\end{aligned}$

- Cellular homology (only for CW-complexes)

Thy: Singular homology satisfies all the axioms of homology.
Outline:

$$
\begin{aligned}
& \text { space chain complexes for groups }
\end{aligned}
$$

Free Abelian Groups: $(A=\mathbb{Z})$
Def.: Fix a set S. (not necessarily finite)

$$
\Pi \mathbb{Z}=\mathbb{Z}^{S}=\mathbb{Z}^{\times S} \text { (the } \text { s- fold direct product }
$$

is the set of functions $S \rightarrow \mathbb{Z}$.
Ex: $\quad S=\{1,2,3\}$

$$
\begin{aligned}
\mathbb{Z}^{\times S} & =\{a:\{1,2,3\} \rightarrow \mathbb{Z}\} \\
& \cong\left\{\left(a_{1}, a_{2}, a_{3}\right) \mid a_{i} \in \mathbb{Z}\right\} \\
& =\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}
\end{aligned}
$$

Def: The s-fold direct sum is the subset

$$
\mathbb{Z}^{\oplus S} \subset \mathbb{Z}^{\times S}
$$

of functions $a: S \rightarrow \mathbb{Z}$ that assign all but finitely many elements to 0 .
Ex: S finite $\Leftrightarrow \mathbb{Z}^{x S}=\mathbb{Z}^{\oplus S}$
Ex: $S=\mathbb{N}=\{0,1,2, \ldots\}$

$$
\begin{aligned}
\mathbb{Z}^{\times \mathbb{N}} & =\left\{\left(a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right) \mid a_{i} \in \mathbb{Z}\right\} \\
& \ni(1,1,1,1,1, \ldots) \\
& \notin \mathbb{Z}^{\oplus \mathbb{N}} \not \not \neq(0,1,0,1,0,1, \ldots)
\end{aligned}
$$

Remark: $\forall S, \mathbb{Z}^{\times S}$ is an abelian group

$$
\begin{gathered}
a=\left(a_{s}\right)_{s \in S}, b=\left(b_{s}\right)_{s \in s} \\
a+b:=\left(a_{s}+b_{s}\right)_{s \in S}
\end{gathered}
$$

Has identity, inverses
Remark: $\mathbb{Z}^{\oplus S}$ has a universal property (i.e. way to create new functions out of old):

Fix • ab. gp. B

- function $f: S \rightarrow B$
\exists : function $\rho_{f}: \mathbb{Z}^{\oplus s} \longrightarrow B$ s.t. ρ_{f} is a gp. nom.

$$
a(t)= \begin{cases}0, & s \neq t \\ 1, & s=t\end{cases}
$$

Ex: $a=\left(0,0,0 \ldots, 3,0, \ldots, 0,-7^{t}, 0, \ldots, 0\right)=3 \mathrm{~s}-7 t$

$$
\rho_{f}(a)=3 f(s)-7 f(t) \quad \text { (formal linear } \quad \text { (ombination) }
$$ combination)

$\mathbb{Z}^{\oplus S}$ is called the free abelian group on S
${ }^{4}$ can make a group how.
Singular Simplices and Chains
Def: Fix a space X, and $n \geq 0$.
A singular n-simplex (in x) is a continuous map $\Delta^{n} \rightarrow x$.

$$
\begin{aligned}
& \left.\Delta^{n}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \text { s.t. } x_{i} \geq 0 \text { and } \sum_{i=0}^{n} x_{i}=1\right\} \\
& n=0 \quad x_{0}=1 \\
& \mathbb{R}
\end{aligned}
$$

$$
n=1
$$

$$
n=2 \quad \Delta^{2}=
$$

Continuous functions can do crazy things!
y cts. functions
Def: The set of singular n-simplices is denoted $\operatorname{sing}_{n}(x)$
Def: The set of singular n-chains of x is $\mathbb{Z}^{\oplus \sin g_{n}(x)}$
These sets are very large!
Ex: An element looks like a finite linear combination $a_{1} \sigma_{1}+\cdots+a_{k} \sigma_{k}, \quad \sigma_{i}: \Delta_{c k s}^{n} \times$ linearization
Notation: Let $C_{n}(x):=C_{n}(x ; \mathbb{Z}):=\mathbb{Z}^{\oplus \operatorname{Sing}_{n}(x)}$
\rightarrow groups in the chain complex
Differential / Faces
Fix $n \geq 0$.
For all $0 \leq i \leq n$ we have a function

$$
\begin{gathered}
\delta_{i}: \Delta^{n-1} \hookrightarrow \Delta^{n} \quad \stackrel{\Delta^{i n} \text { spot }}{\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mapsto\left(x_{0}, x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right)}
\end{gathered}
$$

δ_{i} is the $i^{\text {th }}$ face inclusion

We thus have maps

$$
\begin{aligned}
& a_{i}: \sin _{n}(x) \rightarrow \operatorname{sing}_{n-1}(x) \\
& \left(\sigma: \Delta^{n} \rightarrow x\right) \mapsto(\underbrace{\Delta^{n-1}<\delta_{i} \rightarrow \Delta^{n} \xrightarrow{\sigma} x}) \\
& =\partial_{i} \sigma
\end{aligned}
$$

We say $\alpha_{i} \sigma$ is the $i^{\text {th }}$ face of σ
Def: The ${ }^{n+n}$ differential is $a_{n}: C_{n}(x) \rightarrow C_{n-1}(x)$

$$
1 \sigma=\sigma \mapsto \sum_{i=0}^{n}(-1)^{i} \partial_{i} \sigma
$$

The singular chain complex of X is the chain complex $\left(\left\{C_{n}(x)\right\}_{n}, 2\right)$

Lemma: $\partial_{n} \circ \partial_{n+1}=0$
Def: $H_{n}{ }^{\sin g}(x):=\operatorname{ker}\left(\partial_{n}\right) / \operatorname{Im}\left(a_{n+1}\right)$
Ex: $X=\mathbb{R}^{2}$

$$
\begin{aligned}
& \sigma_{1}: \Delta^{\prime} \rightarrow X \\
& \sigma_{2}: \Delta^{\prime} \rightarrow X \\
& \sigma_{3}: \Delta^{\prime} \rightarrow X
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{1}\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right)=\partial_{1} \sigma_{1}+\partial_{2} \sigma_{2}+\partial_{1} \sigma_{3}=0 \\
& \partial_{1} \sigma_{1}=(-1)^{0}\left(\sigma_{1} \cdot \delta_{0}\right)+(-1)^{\prime}\left(\sigma_{1} \delta_{1}\right) \\
& =\left(\sigma_{1} \circ \delta_{0}\right)-\left(\sigma_{1} \delta_{1}\right) \\
& =P-Q
\end{aligned}
$$

First homology groups of X are represented by closed paths

$$
\begin{aligned}
& \partial_{1} \sigma_{2}=Q-R \\
& \partial_{1} \sigma_{3}=R-3
\end{aligned}
$$

