
Reading 22

Cellular homology computes
homology

These notes prove Theorem 18.0.1: Cellular homology computes homology.
The proof is by induction on the dimension of a CW complex X. To focus

on the big picture, we will assume to start that we have proven the result for
when dim X = n is at least 2. We will end the notes with a proof in the case
n = 1. Here is the outline, in order of presentation:

• For every n Ø 2, prove that H
cell
n

(X) ≥= Hn(X). (Proposition 22.2.1.
This step requires no induction.)

• For every n Ø 2, prove that H
cell
n≠1(X) ≥= Hn≠1(X). (Proposition 22.3.1.

This step requires no induction, but does rely on the previous step.)

• Assume, inductively on n, that for all k, H
cell
k

(X) ≥= Hk(X) for all CW
complexes X of dimension n ≠ 1. Then prove the same is true of all
CW complexes of dimension n. (Proposition 22.4.2. This inductive
step requires us to prove the claim when the dimension of X is 1 if we
want to apply it to CW complexes of dimension 2 and above. So...)

• For n = 1, we prove that for all k, H
cell
k

(X) ≥= Hk(X) for all CW
complexes X of dimension 1. (Proposition 22.5.2.)

• We leave as an exercise that, for all k, H
cell
k

(X) and Hk(X) agree for
all CW complexes X of dimension 0. (Exercise 22.5.1. This step is
not required for all the other steps – that is, our induction begins at
n = 1.)
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You have probably already noticed that Mayer-Vietoris style sequences
can feel very di�erent in dimension 0 (in contrast to other dimensions); our
proofs here follow that pattern. Indeed, in many inductive proofs in math-
ematics, the base case is proven by means di�erent from the inductive step.
(Otherwise, one could typically prove a result for all n at once by a di�erent,
non-inductive strategy!)

Notation 22.0.1. Let X be a CW complex and let ˆn : Hn(Xn
/X

n≠1) æ
Hn≠1(Xn≠1

/X
n≠2) denote the di�erential in its cellular chain complex. We

let
H

cell
n

(X) := ker ˆn

im ˆn+1

denote the nth homology of the cellular chain complex of X.

22.1 A useful fact
Let’s recall the kth cellular di�erential ˆk of the cellular chain complex. It
is given as the composition of the following maps (inverting isomorphisms as
necessary):

Hk≠1(Uk fl Vk) j
//

≥=
✏✏

Hk≠1(Uk) ü Hk≠1(Vk)
≥=
// Hk≠1(Vk) Hk≠1(Xk≠1)≥=

oo

(qk≠1,k≠2)ú
✏✏

Hk(Xk
/X

k≠1) ≥=
”
// Hk≠1(Uk,k≠1 fl Vk,k≠1) Hk≠1(Xk≠1

/X
k≠2)

By ignoring the isomorphisms, one can informally think of the di�erential
as simply a composition of the map j (in the appropriate Mayer-Vietoris
sequence) with the map (qk≠1,k≠2)ú. Here is a useful fact:

Lemma 22.1.1. For all k Ø 1, the maps

Hk≠1(Xk≠1)
(qk≠1,k≠2)ú

// Hk≠1(Xk≠1
/X

k≠2)

are injections.

Proof. For k = 1, recall that X
k≠2 = X

≠1 is the empty set, so that q0,≠1 is
an isomorphism (induced by the identity map).
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For all k Ø 2, by naturality of the Mayer-Vietoris sequence for the con-
tinuous map qk≠1,k≠2, we have a commuting square of groups

Hk≠1(Xk≠1) ”
//

(qk≠1,k≠2)ú
✏✏

Hk≠2(Uk≠1 fl Vk≠1)
≥=
✏✏

Hk≠1(Xk≠1
/X

k≠2) ≥=
”
// Hk≠2(Uk≠1,k≠2 fl Vk≠1,k≠2).

On the other hand, because Uk≠1 is a disjoint union of points and Vk≠1 is
homotopy equivalent to X

k≠2, we see that the map preceding the ” map in
the top row is the zero map. By exactness of the Mayer-Vietoris sequence,
the ” in the top row is an injection. By the commutativity of the square
above, we conclude that (qk≠1,k≠2)ú is an injection.

22.2 The top dimension (n Ø 2)

Let X be a CW complex of dimension n. As you know, X
n = X is obtained

by attaching k-cells to X
n≠1. Let us see how this attachment “changes” the

homology. In other words, let us study the inclusion X
n≠1 æ X

n and what
the induced map on homology looks like.

For this, let us choose the usual open cover of X = X
n. U is a disjoint

union of open n-disks (and hence a disjoint union of contractible spaces)
while V is an open neighborhood of X

n≠1 for which the inclusion X
n≠1 æ V

is a homotopy equivalence. We note that U fl V is a disjoint union of spaces
homotopy equivalent to S

n≠1.
The Mayer-Vietoris sequence near Hn(X) is:

0 æ Hn(X) ”
// Hn≠1(U fl V ) jn≠1

// Hn≠1(U) ü Hn≠1(V ) .

In particular we can identify Hn(X) with the kernel of jn≠1.

Proposition 22.2.1. If X = X
n is an n-dimensional CW complex with the

open cover U, V as above, there exists an isomorphism between ker(jn≠1) and
ker(ˆn). In particular,

Hn(X) ≥= H
cell
n

(X).
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Proof. We can write out the di�erential ˆn as below, along with the extra
data of the maps from Hn(X):

0 æ Hn(X) ”
//

(qn,n≠1)ú
✏✏

Hn≠1(U fl V ) jn≠1
//

≥=
✏✏

Hn≠1(U) ü Hn≠1(V )
≥=
// Hn≠1(V ) Hn≠1(Xn≠1)≥=

oo

(qn≠1,n≠2)ú
✏✏

Hn(X/X
n≠1) ≥=

”
// Hn≠1(Un,n≠1 fl Vn,n≠1) Hn≠1(Xn≠1

/X
n≠2)

(22.2.0.1)
The vertical maps (qn,n≠1)ú and (qn≠1,n≠2)ú are injections by Lemma 22.1.1.
It follows that ker(ˆn) = ker(jn≠1).

Remark 22.2.2. When X is an n-dimensional CW complex, we often say
that Hn(X) is the top-dimensional homology group of X. So Proposition 22.2.1
tells us that top-dimensional homology of X is isomorphic to the top-dimensional
cellular homology of X.

22.3 Codimension 1 (n Ø 2)
If X is n-dimensional, then the codimension k skeleton of X is X

n≠k. The
codimension k homology group is Hn≠k(X).

Let’s now prove that the codimension one homology group of X = X
n is

isomorphic to codimension one cellular homology:

Proposition 22.3.1. Let X be an n-dimensional CW complex. There exist
isomorphisms H

cell
n≠1(Xn) ≥= Hn≠1(Xn).

Proof. By definition of the cellular chain complex, we know that the cellular
chain complexes of X and of X

n≠1 are identical up to degree n ≠ 1. We thus
have a chain map from the cellular chain complex of X

n≠1 to that of X
n,

given by the downward arrows below:

. . . //

=
✏✏

0 //

✏✏

Hn≠1(Xn≠1
/X

n≠2)
=
✏✏

ˆn≠1
// Hn≠2(Xn≠2

/X
n≠3)

=
✏✏

ˆn≠2
// . . .

=

✏✏0 // Hn(Xn
/X

n≠1) ˆn
// Hn≠1(Xn≠1

/X
n≠2) ˆn≠1

// Hn≠2(Xn≠2
/X

n≠3) ˆn≠2
// . . .

(22.3.0.1)
So we see that the (n ≠ 1)st cellular homology of X = X

n is a quotient of
the (n ≠ 1)st cellular homology of X

n≠1:

H
cell
n≠1(Xn≠1) = ker(ˆn≠1) æ ker(ˆn≠1)/ im(ˆn) = H

cell
n≠1(X). (22.3.0.2)
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So our goal now is to locate ˆn and Hn≠1(Xn≠1) in the Mayer-Vietoris se-
quence for X. In analyzing (22.2.0.1), we have already seen that – because
the map (qn≠1,n≠2)ú is an injection – there are isomorphisms identifying the
image of ˆn with the image of jn≠1:

im(ˆn) ≥= im(jn≠1) µ Hn≠1(U) ü Hn≠1(V ). (22.3.0.3)

On the other hand, examining the Mayer-Vietoris sequence for X = X
n

Hn≠1(U fl V ) jn≠1
// Hn≠1(U) ü Hn≠1(V ) i

// Hn≠1(X) ”
// Hn≠2(U fl V ).

and noting that the last term above is (isomorphic to) zero1, we conclude
that Hn≠1(X) is isomorphic to

(Hn≠1(U) ü Hn≠1(V )) / im(jn≠1).

Because U is a disjoint union of disks (hence homotopy equivalence to a
disjoint union of points) and because we are currently assuming n Ø 2, we
thus conclude that Hn≠1(X) is isomorphic to

Hn≠1(V )/ im(jn≠1).

On the other hand, we have a commuting diagram

H
cell
n≠1(Xn≠1)

≥= Prop 22.2.1
✏✏

ker(ˆn≠1)=
oo im(ˆn)∏

oo

≥= (22.3.0.3)

✏✏

Hn≠1(Xn≠1)
≥=
✏✏

Hn≠1(V ) Hn≠1(U) ü Hn≠1(V )
≥=

oo im(jn≠1)∏
oo

where the lower-left arrow is an isomorphism because X
n≠1 æ V is a ho-

motopy equivalence, the upper-left arrow is an isomorphism by Proposi-
tion 22.2.1 applied to X

n≠1, and the diagram commutes by invoking the
definition of ˆn as in (22.2.0.1), and invoking the injectivity of (qn≠1,n≠2)ú. 2

1
Because U fl V is a disjoint union of (n ≠ 1)-dimensional spheres.

2
It is rather tedious to check that the diagram commutes – because the rightmost

downward arrow and the upperleft downward arrow are involved. But it is true!
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Because the above diagram commutes, and because the arrows indicated
as isomorphisms are isomorphisms, we have that the map

1
H

cell
n≠1(Xn≠1)/ im(ˆn)

2
æ (Hn≠1(V )/ im(jn≠1)) ≥= Hn≠1(X)

is an isomorphism. The desired result follows by the identifications in (22.3.0.2).

22.4 Isomorphisms in all other dimensions (n Ø
2)

We begin with an algebra lemma.
Lemma 22.4.1. Let A and B be abelian groups. Suppose j : C æ A ü B

is a group homomorphism c ‘æ (f(c), g(c)) such that f is an isomorphism.
Then the inclusion B æ A ü B, b ‘æ (0, b) induces an isomorphism

B ≥= (A ü B)/ im(j).

Proof. We study the map B æ A ü B defined by b ‘æ (0, b). I claim that
the composition with the quotient map A ü B æ (A ü B)/ im(j) is an
isomorphism.

To see this is an injection, suppose [(0, b)] = [(0, 0)]. This means that
for some c œ C, (0, b) = (f(c), g(c)). Because f is an isomorphism (and in
particular an injection), this is only possible if c = 0, in which case g(c) = 0
as well. Thus, [(0, b)] = [(0, 0)] =∆ b = 0.

To see this map is a surjection, fix an element [(a, b)] in the quotient. We
must prove that [(a, b)] = [(0, b

Õ)] for some b
Õ. Because f is a surjection, there

exists some c for which f(c) = a. Thus

[(a, b)] = [(a ≠ f(c), b ≠ g(c))] = [(0, b ≠ g(c))].

So by setting b
Õ = b ≠ g(c), we see that b ‘æ [(0, b)] is a surjection.

Proposition 22.4.2. Fix an integer n Ø 2. Assume that cellular homology
and usual homology are isomorphic for all3 CW complexes of dimension n≠1.
Then they are isomorphic for all CW complexes of dimension n.

3
As usual we may assume that X has finitely many cells in each dimension, or we may

remove that assumption if we add on the axiom that infinite disjoint unions of spaces have

homology groups given by infinite direct sums of the homologies of the constituent spaces

in the disjoint union.
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Proof. Let X = X
n be an n-dimensional CW complex. We must prove that

H
cell
k

(X) is isomorphic to Hk(X). We have already seen this is true for k = n

and k = n ≠ 1 by Propositions 22.2.1 and 22.3.1. The result is for k Ø n + 1
is true because higher homology vanishes (Theorem 17.1.2).

So we are left to tackle the case of 0 Æ k Æ n≠2. By (22.3.0.1), the cellular
chain complexes of X

n and X
n≠1 are identical in degrees k, 0 Æ k Æ n ≠ 1,4

so we have isomorphisms

H
cell
k

(Xn) ≥= H
cell
k

(Xn≠1), 0 Æ k Æ n ≠ 2.

By hypothesis, H
cell
k

(Xn≠1) ≥= Hk(Xn≠1) for all k. So it remains to show
that Hk(Xn≠1) ≥= Hk(Xn) for all 0 Æ k Æ n ≠ 2.5 For this, we use the usual
Mayer-Vietoris sequence for X

n; the kth row gives

Hk(U fl V ) æ Hk(U) ü Hk(V ) ik≠æ Hk(Xn) æ Hk≠1(U fl V ).

Case 2 Æ k Æ n≠2: Because U flV is a disjoint union of spheres of dimension
n≠1, the groups Hk(UflV ) and Hk≠1(UflV ) vanish for 2 Æ k Æ n≠2. Thus ik

is an isomorphism, while Hk(U) ≥= 0 for k Ø 1, and V is homotopy equivalent
to X

n≠1. We thus conclude Hk(Xn≠1) ≥= Hk(Xn) when 2 Æ k Æ n ≠ 2.
Case k = 1: The inclusion map U fl V æ U induces an injection on H0,

so the homomorphism H0(U fl V ) j0≠æ H0(U) ü H0(V ) is an injection. (i) If
n Ø 3, it follows that i1 is a surjection, while H1(U flV ) is zero.6 This means
i1 is also an injection. Again because Hk(V ) ≥= Hk(Xn≠1), the claim follows.
(ii) If n = 2 (and k still equals 1) we proved the result in Proposition 22.3.1.

Case k = 0: The map j0 : H0(U fl V ) æ H0(U) ü H0(V ) is of the form
a ‘æ ((jU)ú(a), (jV )ú(a)), where (jU)ú is an isomorphism7. By Lemma 22.4.1,
the quotient of H0(U) ü H0(V ) by j0 is isomorphic to H0(V ). On the other
hand, this quotient is (by exactness of Mayer-Vietoris) isomorphic to H0(X).

This completes the proof.

4
This n ≠ 1 – in contrast to the n ≠ 2 terms that follow – is not a typo. By having the

chain complex agree in degrees 0 to n ≠ 1, we see that im ˆk agrees for k in the range up

to n ≠ 1. Note we would need control on im ˆn to conclude something about Hn≠1.
5
Note that there is typically no such isomorphism for k = n ≠ 1 and k = n.

6
Remember U fl V is a disjoint union of (n ≠ 1)-dimensional spheres.

7
This is because U fl V is a disjoint union of spheres of dimension n ≠ 1 Ø 1, while the

inclusion jU : U fl V æ U includes each sphere into a single disk.
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22.5 n Æ 1
The previous sections proved that cellular homology agrees with usual ho-
mology when the dimension of a CW complex is at least 2 – but this was
premised on an induction. So let us complete the base cases: n = 0 and
n = 1.

You can (I promise) do the n = 0 case:

Exercise 22.5.1. When X is a zero-dimensional CW complex8, prove that
cellular homology of X agrees with the usual homology.

So we turn our attention to the n = 1 case.

Proposition 22.5.2. When X is a one-dimensional CW complex, the cel-
lular homology of X agrees with the usual homology of X.

To begin, consider the usual open cover of X = X
1 by U = U1 and

V = V1. Here is the first bit of the Mayer-Vietoris sequence for this open
cover:

H1(U) ü H1(V ) // H1(X) ”
// H0(U fl V ) j0

// H0(U) ü H0(V ).

Because U is a disjoint union of (one-dimensional) disks and V is homotopy
equivalent to X

0 (a union of points), we conclude that the first term above
is (isomorphic to) the zero group. By exactness ” is an injection, so H1(X)
is identified with the kernel of j0.

9

Recall the isomorphism

H1(X1
/X

0) ≥= H1(U fl V ) (22.5.0.1)

given in (17.3.0.2) by composing ” and (the inverse to) (17.3.0.1)ú.
8
You may assume X has finitely many cells. If you want to assume X has infinitely

many cells, you may further invoke the axiom that an infinite disjoin union of spaces has

homology given as an infinite direct sum of those spaces’ homologies.
9
Why is this n = 1 case di�erent from the n Ø 2 cases? Unlike the cases of n Ø 2, the

group Hn≠1(U fl V ) = H0(U fl V ) is not immediately identified with Hn(X
n
/X

n≠1
) ≥=

H1(X/X
0
) – this is because H0(U fl V ) is not a direct sum of A over the set of n-cells in

X
n
.
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Proposition 22.5.3. The isomorphism (22.5.0.1) identifies the kernel of ˆ1
with the kernel of j0.

In particular, H1(X) ≥= H
cell
1 .

Proof. We first compute the kernel of j0. Recall j0 is given by

a ‘æ ((jU)ú(a), (jV )ú(a))

where jU is the inclusion U fl V æ U and jV is the inclusion U fl V æ V .
Let’s understand what a œ H0(U fl V ) can look like. Let’s write elements

of the zero homology group of S
0 as

(a≠
, a

+) œ A ü A ≥= H0(S0)

and, because U fl V is a disjoin union of S
0, with a copy for each 1-cell of X,

we can write

H0(U fl V ) ≥= H0(
·

–œA1

S
0) ≥=

n

–œA1

H0(S0) ≥=
n

–œA1

A ü A.

Accordingly we may write an element of H0(U fl V ) as10

(a≠
–

, a
+
–

)–œA1 .

We note that because jU includes the –th copy of S
0 into the –th open 1-cell

Ball(0, 1) µ D
1
–
, the induced map on H0 is computed as11

(jU)ú : (a≠
–

, a
+
–

)–œA1 ‘æ (a≠
–

+ a
+
–

)–œA1 .

So
(jU)ú(a) = 0 =∆ ’–, a

≠
–

= ≠a
+
–

. (22.5.0.2)

Thus ker j0(a) is a subset of the antidiagonal; accordingly, we see that

ker j0 µ � ≥= A
üA1

10
For example, if A1 consists of three elements p, q, r then an element of H0(U fl V ) can

be written as a six-tuple: (a
≠
p , a

+
p , a

≠
q , a

+
q , a

≠
r , a

+
r ). Note this 6-tuple is a choice of element

of H0(pt) for the six points in U fl V ƒ pt
‡

. . .
‡

pt.
11

Following the notation of the previous footnote with A1 = {p, q, r}, the 6-tuple is sent

to the triple (a
≠
p + a

+
p , a

≠
q + a

+
q , a

≠
r + a

+
r ).
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where the isomorphism with the antidiagonal is the map

(a–)–œA1 ‘æ (≠a–, a–)–œA1 .

Let us now understand (jV )ú. H0(V ) ≥= H0(X0) ≥= ü—œA0A, and the inclusion
of an element of U fl V into V induces identity maps on each component12.
So (jV )ú sends a = (a≠

–
, a

+
–

)–œA1 to13

(
ÿ

Ï–(+1)=D
0
—

a
+
–

+
ÿ

Ï–(≠1)=D
0
—

a
≠
–

)—œA0 .

. So if (jU)ú(a) = 0, we conclude that (jV )ú(a) is given by
Q

ca
ÿ

Ï–(+1)=D
0
—

a
+
–

≠

Q

ca
ÿ

Ï–(≠1)=D
0
—

a
≠
–

R

db

R

db

—œA0

. (22.5.0.3)

. But this is precisely the expression for ˆ1 in the cellular chain complex
(Exercise 18.2.6). This shows j0 and ˆ1 are identified through the isomor-
phism (22.5.0.1), so the claim follows.

Proposition 22.5.4. Let X be a 1-dimensional CW complex. Then there
exists an isomorphism H0(X) ≥= H

cell
0 (X).

Proof. Consider the Mayer-Vietoris sequence for the usual cover.

H0(X0)

✏✏ ''

0 æ H1(X) // H0(U fl V ) j0
// H0(U) ü H0(V ) i0

// H0(X) // 0

The inclusion of X
0 into V is a homotopy equivalence, and the downward map

is induced by this equivalence. That is, the map H0(X0) æ H0(U) ü H0(V )
takes the form a ‘æ (0, „(a)) where „ is some group isomorphism. Further
composing the inclusion X

0 æ V by the inclusion iV : V æ X, the dashed
12

We studied induced maps on H0 for inclusions of points in 8.3.
13

Let me give an explanation for the summation. Consider the – œ A1
for which the

gluing map Ï– sends the element +1 œ ˆD
1

to —, and add up all the a
+
– for such –.

Likewise, for all – œ A1
for which Ï–(≠1) equals the 0-cell indexed by —, we add up all

a
≠
– . We add up both these summations, and that gives the — component.
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arrow gives the map on homology induced by X
0 æ X. This dashed arrow

is a surjection on H0.14 So by the first isomorphism theorem

H0(X0)/(kernel of dashed arrow) ≥= H0(X).

Thus, it su�ces to show that the kernel of the dashed arrow is the image of
ˆ1.

By the commutativity of the triangle (containing the dashed arrow) and
the injectivity of H0(X) æ H0(U) ü H0(V ), the kernel of the dashed arrow
is identified with the intersection

{(0, b)}
‹

ker i0 µ H0(U) ü H0(V ).

By exactness, the kernel of the dashed arrow is thus identified with

{(0, b)}
‹

im j0.

On the other hand, we know15 that the portion of H0(U fl V ) having image
with H0(U)-component zero is the antidiagonal inside H0(U fl V ). And for
elements in this subset, we know16 that j0 has H0(V ) component given by

Q

ca
ÿ

Ï–(+1)=D
0
—

a
+
–

≠

Q

ca
ÿ

Ï–(≠1)=D
0
—

a
≠
–

R

db

R

db

—œA0

.

But this is precisely the expression for ˆ1. In other words, the map H0(X0) æ
H0(U) ü H0(V ) precisely sends im ˆ1 to the set

{(0, b)}
‹

im j0.

This completes the proof.

22.6 Proof of Proposition 22.5.2
Proof. Combine Proposition 22.5.3 and Proposition 22.5.4.

14
By definition of CW complex, every connected component of X contains at least one

element of X
0
. So the inclusions of one element of X

0
for every component of X induces

a surjection on homology.
15

See (22.5.0.2).
16

See (22.5.0.3)
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22.7 Proof of Theorem 18.0.1
Proof. Combine

• Exercise 22.5.1 (for the case dim X = 0),

• Proposition 22.5.2 (for the dimension of X being 1), and

• Proposition 22.4.2 (for the induction on dimension).

Remark 22.7.1. Theorem 18.0.1 is true without any assumptions on whether
X is finite-dimensional or whether X has only finitely many cells in each di-
mension.

To prove this, though, requires further axioms for homology. We have
already seen that the “infinite direct sum” axiom is necessary to remove the
assumption about finitely many cells in each dimension.

A further axiom we need is that when a space X is given a colimit topol-
ogy over an increasing sequence of subspaces (just as an infinite-dimensional
CW complex is) then the homology of X is given as a directed limit of the
homology groups of its constituents. Because we do not talk about directed
limits of groups in this class, we have avoided this discussion. In the case of
CW complexes, however, the notion of a directed limit simplifies: One can
simply think of the directed limit as a copy of Hn(Xm) for m Ø 2 – because
Hn(Xm) ≥= Hn(Xm

Õ) if m, m Ø 2 and if X
m

, X
m

Õ are skeletons of the same
CW complex.


