
Reading 21

Cellular homology of real
projective space

We know from previous lectures that the di�erential in the cellular chain
complex

ˆk : Hk(Xk
/X

k≠1) æ Hk≠1(Xk≠1
/X

k≠2)
is a matrix whose –, — component (after a change of basis) is computed as
the map induced on homology of the following composition:

ˆD
k

–

Ï–
// X

k≠1 qk≠1,k≠2
// X

k≠1
/X

k≠2 ≥=
x

—œAk≠1 S
k≠1 p—

// S
k≠1
—

.

Here, p— is the “projection” map. It acts as the identity on the —th copy of
S

k≠1, and collapses all other spheres to the basepoint x0.
We witness the concrete role that the attaching map Ï– plays in the

cellular di�erential.

21.1
Today, to get our hands dirty, we will consider the case X = RP

n, otherwise
known as real projective space of dimension n. It is not a bad time to brush
up on Reading 16.

Recall X can be given a CW structure where for every k between 0 and
n, X has exactly one k-cell. So there is no need to worry about –s and —s.
Put another way,

X
k
/X

k≠1 ≥=
fl

–œAk

S
k ≥= S

k

187
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for all k Ø 1. Let us also recall that X
k = RP

k.
Moreover, we know that the attaching map for the k-cell is the quotient

map
ˆD

k = S
k≠1 æ X

k≠1 = RP
k≠1

, v ‘æ [v] = {±v}.

It is our task now to understand the composition

S
k≠1 æ RP

k≠1 æ RP
k≠1

/RP
k≠2 ≥= S

k≠1
.

The induced map on homology of the above composition is the map ˆk. Note
that k = 1 is a special case, as X

0 = pt (not S
0).

21.2 k = 1
Let us compute ˆ1. We know that to compute this di�erential, we look at
every 1-cell D

1
–

and determine where the endpoints of D
1
–

are sent via the
attaching map.

In our case, X
1 = RP

1 is obtained from X
0 = pt by attaching both

endpoints of a single D
1 to X

0. In particular, if x œ H1(X1
/X

0) ≥= H1(S1),
we have that

ˆ1(x) = x ≠ x = 0.

So we have computed that ˆ1 = 0.

21.3 k = 2
We know that the 2-cell of RP

n is attached via the map

ˆD
2 = S

1 æ RP
1
, v ‘æ [±v].

Confusingly, RP
1
/RP

0 ≥= RP
1 ≥= S

1. Moreover, because (1, 0) and (≠1, 0) œ
S

1 have the same image, Ï1 factors through the quotient
1
ˆD

2
/(1, 0) ≥ (0, 1)

2 ≥= S
1 ‚ S

1

so we are now in business. We may add up the e�ect on homology from each
component of S

1 ‚ S
1 to RP

1 ≥= S
1 to compute ˆ2. It is straightforward

to see that the map from each component of S
1 ‚ S

1 is identified with the
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Ï

pinch id ‚ id

Figure 21.3.1. The attaching map for the 2-cell of RP
2 is a map S

1 æ S
1

of degree 2.

identity map S
1 æ S

1. In other words, Ï is a composition of a pinch map
follows by two identity maps. By Proposition 20.4.2, we conclude

ˆ2 : H2(RP
2
/RP

1) æ H1(RP
1
/RP

0)

after changing basis to H2(RP
2
/RP

1) ≥= H1(S1) and H1(RP
1
/RP

0) ≥= H1(S1),
is given by the map

ˆ2(x) = 2x.

In summary, the cellular chain complex of RP
n looks as follows, so far:

. . .
ˆ3
// A

2
// A

0
// A // 0 // . . . (21.3.0.1)

21.4 Homology of RP
2

Because RP
2 has no 3-cells (and no higher dimensional cells) we can compute

its homology using what we’ve done so far.
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Exercise 21.4.1. Show, by computing the homology of the cellular chain
complex (21.3.0.1), that:

(a) For any abelian group A, we have

Hi(RP
2; A) ≥=

Y
_____]

_____[

A i = 0
A/2A i = 1
ker(A 2≠æ A) i = 2
0 i Ø 3

In particular,

(b) For A = Z, we have

Hi(RP
2;Z) ≥=

Y
_____]

_____[

Z i = 0
Z/2Z i = 1
0 i = 2
0 i Ø 3

(c) For A = F2, we have

Hi(RP
2;F2) ≥=

Y
_____]

_____[

F2 i = 0
F2 i = 1
F2 i = 2
0 i Ø 3.

(d) For A = F3 = Z/3Z, we have

Hi(RP
2;F3) ≥=

Y
_____]

_____[

F3 i = 0
0 i = 1
0 i = 2
0 i Ø 3.

(e) For A = Z/4Z, we have

Hi(RP
2;Z/4Z) ≥=

Y
_____]

_____[

Z/4Z i = 0
Z/2Z i = 1
Z/2Z i = 2
0 i Ø 3.
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(f) For A = Z/6Z, we have

Hi(RP
2;Z/6Z) ≥=

Y
_____]

_____[

Z/6Z i = 0
Z/2Z i = 1
Z/3Z i = 2
0 i Ø 3.

Remark 21.4.2. Exercise 21.4.1 should really open our eyes.
Even over Z, we are witnessing that a 2-dimensional CW complex can

have trivial 2nd homology groups. (Secretly, we knew this was possible al-
ready – we could for example consider D

2, which has the homology of a
point.)

We are witnessing that homology groups can look substantially di�erent
depending on our choice of A. For example, over F2, Z/4Z and Z/6Z, the
2nd homology groups are non-trivial. In particular, di�erent choices of A

seem to capture di�erent aspects of the topology of RP
2 – over F3, RP

2 has
homology at dimensions 1 and above.

Finally, we are also seeing how homology groups can di�er substantially
based on the dimension i. Over Z/6Z, the homology groups H0, H1, H2 are
di�erent abelian groups.

21.5 The geometry of the attaching map
To compute ˆk+1 in general, we have to study the composition

ˆD
k+1 = S

k
x ‘æ[±x]

// RP
k

qk,k≠1
// RP

k
/RP

k≠1
.

For brevity, let’s call the composition f . Let E µ S
k be the equator. Then

f(E) = [RP
k≠1]1. So f factors through S

k
/E ≥= S

k ‚ S
k. That is (by the

universal property of quotient spaces) there is a dashed continuous map as
below, making the triangle commute:

S
k

f
//

!!

RP
k
/RP

k≠1

S
k
/E

88

(21.5.0.1)

1
In fact, f

≠1
([RP

k≠1
]) = E
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Let us identify each term in a useful way.

21.5.1 Collapsing the equator
Identify D

k with the northern and southern hemispheres of S
k as usual2:

a+ : D
n æ S

n
, (x0, . . . , xn≠1) ‘æ

Q

ax0, . . . , xn≠1,

ı̂ıÙ1 ≠
nÿ

i=1
x

2
i

R

b

a≠ : D
n æ S

n
, (x0, . . . , xn≠1) ‘æ

Q

ax0, . . . , xn≠1, ≠
ı̂ıÙ1 ≠

nÿ

i=1
x

2
i

R

b .

(21.5.1.1)
This induces a homeomorphism

(Dk
/ˆD

k)+ ‚ (Dk
/ˆD

k)≠ æ S
k
/E (21.5.1.2)

where we have labeled the two components of the domain by + and ≠ for
later notational clarity. The homeomorphism sends an element [x] of the
domain to [a+(x)] or to [a≠(x)] depending on the component of the wedge
sum x is in.

Consider the commutative diagram of topological spaces below:

S
k

h+
$$

// S
k
/E

[a+]≠1‚[a≠]≠1

≥=
//

✏✏

(Dk
/ˆD

k)+ ‚ (Dk
/ˆD

k)≠
p+
// D

k
/ˆD

k

S
k
/a≠(Dk) D

k
/ˆD

k id
//

≥=
[a+]
oo D

k
/ˆD

k

id

OO

We note that h+ is the map that collapses the southern hemisphere (including
the equator). Concretely, the arrows in the lower-left corner of the diagram
compose as follows:

[a+]≠1 ¶ h+(x) =

Y
]

[
[ˆD

k] x is in the southern hemisphere
[a≠1

+ (x)] x is in the northern hemisphere

And of course, a
≠1
+ (x) has a very easy expression:

a
≠1
+ (x0, x1, . . . , xn≠1, xn) = (x0, x1, . . . , xn≠1)

2
We saw this in (16.2.0.1)
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so we may re-write our above formula as

[a+]≠1 ¶ h+(x) =

Y
]

[
[ˆD

k] x is in the southern hemisphere
[(x0, x1, . . . , xn≠1)] x is in the northern hemisphere

In the minus version, letting h≠ : S
k æ S

k
/a+(Dk) collapse the northern

hemisphere to a point, we find

[a≠]≠1 ¶ h≠(x) =

Y
]

[
[ˆD

k] x is in the northern hemisphere
[(x0, x1, . . . , xn≠1)] x is in the southern hemisphere

To decrease clutter, let’s use the notation

fi+ := [a+]≠1 ¶ h+ fi≠ := [a≠]≠1 ¶ h≠.

Let Rk : S
k æ S

k denote the map

(x0, x1, . . . , xk≠1, xk) ‘æ (x0, x1, . . . , xk≠1, ≠xk).

In words, Rk is the reflection about the usual copy of Rk inside Rk+1. Then
we see that

fi≠ = fi+ ¶ Rk.

Putting everything together, we find

Proposition 21.5.1. Let fi+ denote the composition

S
k æ S

k
/E

≥=≠æ (Dk
/ˆD

k)+ ‚ (Dk
/ˆD

k)≠
p+≠æ (Dk

/ˆD
k)+

and let fi≠ denote the composition

S
k æ S

k
/E

≥=≠æ (Dk
/ˆD

k)+ ‚ (Dk
/ˆD

k)≠
p≠≠æ (Dk

/ˆD
k)≠.

Then
fi≠ = fi+ ¶ R.
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21.5.2 Collapsing the (k ≠ 1)-skeleton

Moreover, we recall that we have a preferred isomorphism RP
k
/RP

k≠1 ≥=
D

k
/ˆD

k, as follows: Thinking of RP
k as a quotient of a sphere, we identify

D
k with the northern hemisphere and identify E/(x ≥ ≠x) with RP

k≠1.
This allows us to write

D
k
/ˆD

k
≥=≠æ RP

k
/RP

k≠1
, [x] ‘æ [a+(x)]. (21.5.2.1)

The homeomorphisms (21.5.1.2) and (21.5.2.1) thus fit into a commuting
square

(Dk
/ˆD

k)+ ‚ (Dk
/ˆD

k)≠
≥=

[a+]‚[a≠]
//

f
Õ

✏✏

S/E

✏✏

D
k
/ˆD

k
≥=
[a+]

// RP
k
/RP

k≠1

where the dashed arrow is from (21.5.0.1). Our task is to understand f
Õ.

• If [x] is in the + component, the top horizontal arrow sends [x] to
[a+(x)], and the dashed arrow sends v œ S to [v], so the composition of
the two sends [x] to [a+(x)]. In particular, if [x] is in the + component,
f

Õ sends [x] to [x].

• If [x] is in the ≠ component, the composition of the top horizontal arrow
with the dashed arrow is [≠a≠(x)]. So f

Õ sends [x] to [a≠1
+ (≠a≠(x))].

So let us understand [a≠1
+ (≠a≠(x))]. Parsing the formulas (21.5.1.1) we find

that

[a≠1
+ (≠a≠(x))] =

S

Ua
≠1
+ (≠

Q

ax0, x1, . . . , xn≠1, ≠
ı̂ıÙ1 ≠

nÿ

i=1
x

2
i

R

b

T

V

=
S

Ua
≠1
+ (

Q

a≠x0, ≠x1, . . . , ≠xn≠1,

ı̂ıÙ1 ≠
nÿ

i=1
x

2
i

R

b

T

V

= [(≠x0, ≠x1, . . . , ≠xn≠1)]
= [≠x] .
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the triangle (21.5.0.1) becomes:

S
k

//

((

D
k
/ˆD

k

(Dk
/ˆD

k)+ ‚ (Dk
/ˆD

k)≠

55

(21.5.2.2)

In other words, f
Õ is a wedge of two maps – one that sends [x] to itself

(otherwise known as the identity map) and a map that sends [x] to [≠x]. We
have proven:

Proposition 21.5.2. The following diagram of continuous maps commutes:

S
k

f
//

✏✏

RP
k
/RP

k≠1

S
k
/E // RP

k
/RP

k≠1

(Dk
/ˆD

k)+ ‚ (Dk
/ˆD

k)≠
id ‚[≠x]

//

≥=[a+]‚[a≠]
OO

(Dk
/ˆD

k).

[a+] ≥=

OO

21.5.3 Putting things together
Combining Propositions 21.5.1 and 21.5.2, we finally have a usable descrip-
tion of the map f in (21.5.0.1):

Proposition 21.5.3. The diagram

Hk(Sk) fú
//

(fi+)úü(fi+¶R)ú
✏✏

Hk(RP
k
/RP

k≠1)

Hk((Dk
/ˆD

k)+) ü Hk((Dk
/ˆD

k)≠) idú +[≠x]ú
// Hk(Dk

/ˆD
k).

≥=[a+]ú

OO

commutes.

Lemma 21.5.4. R : S
k æ S

k is a degree -1 map.

Proof of Lemma 21.5.4. This was a homework assignment.

Lemma 21.5.5. [≠x] : D
k
/ˆD

k æ D
k
/ˆD

k is a degree 1 map if k is even,
and degree -1 map if k is odd.



196READING 21. CELLULAR HOMOLOGY OF REAL PROJECTIVE SPACE

Proof. Suppose k is even. Then the map x ‘æ ≠x is represented by a k-by-
k-dimensional matrix ≠I – negative the identity:

Q

ccccccccccccccca

≠1 0 0 0 . . . . . . 0 0
0 ≠1 0 0 . . . . . . 0 0
0 0 ≠1 0 . . . . . . 0 0
0 0 0 ≠1 . . . . . . 0 0
... ... ... ... . . . . . . ... ...
... ... ... ... . . . . . . ... ...
0 0 0 0 . . . . . . ≠1 0
0 0 0 0 . . . . . . 0 ≠1

R

dddddddddddddddb

Then the family of functions Ht represented by the matrix

Q

ccccccccccccccca

cos(fit) ≠ sin(fit) 0 0 . . . . . . 0 0
sin(fit) ≠ cos(fit) 0 0 . . . . . . 0 0

0 0 cos(fit) ≠ sin(fit) . . . . . . 0 0
0 0 sin(fit) ≠ cos(fit) . . . . . . 0 0
... ... ... ... . . . . . . ... ...
... ... ... ... . . . . . . ... ...
0 0 0 0 . . . . . . cos(fit) ≠ sin(fit)
0 0 0 0 . . . . . . sin(fit) ≠ cos(fit)

R

dddddddddddddddb

from t = 0 to t = 1 is a homotopy from the identity matrix to the ≠I matrix.
Notice that because, for every t, the matrix Ht is an orthogonal matrix,
Ht(ˆD

k) = ˆD
k, so the induced map of quotient spaces [Ht] indeed defines

a function D
k
/ˆD

k æ D
k
ˆD

k. Because [H0] = idDk/ˆDk and [H1] = [≠x],
this shows that [≠x]ú = idú = id.

Now if k is odd, then the same argument (with a -1 in the last corner!)
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produces a homotopy
Q

ccccccccccccccccca

cos(fit) ≠ sin(fit) 0 0 . . . . . . 0 0 0
sin(fit) ≠ cos(fit) 0 0 . . . . . . 0 0 0

0 0 cos(fit) ≠ sin(fit) . . . . . . 0 0 0
0 0 sin(fit) ≠ cos(fit) . . . . . . 0 0 0
... ... ... ... . . . . . . ... ... ...
... ... ... ... . . . . . . ... ... ...
0 0 0 0 . . . . . . cos(fit) ≠ sin(fit) 0
0 0 0 0 . . . . . . sin(fit) ≠ cos(fit) 0
0 0 0 0 . . . . . . 0 0 ≠1

R

dddddddddddddddddb

from [≠x] to a map that reflects the last coordinate (and is the identity on
all other coordinates). On the other hand, one can choose a homeomorphism
D

k
/ˆD

k ≥= S
k so that this map reflecting only the last coordinate is trans-

formed to R on S
k. Thus Lemma 21.5.4 allows us to see that the operation

D
k
/ˆD

k æ D
k
/ˆD

k reflecting only one coordinate induces the map -1 on
kth homology.
Corollary 21.5.6. If k is odd, then ˆk+1 – after a change of basis – is
the multiplication-by-2 homomorphism. If k is even, then ˆk+1 is the zero
homomorphism.
Proof of Corollary 21.5.6 assuming Lemmas 21.5.4 and 21.5.5. If k is odd,
we have

(idú +[≠x]ú)((fi+)ú ü (fi+ ¶ R)ú)(x) = (idú +[≠x]ú) ((fi+)úx, ≠(fi+)úx, )
= (fi+)úx + (fi+)úx

= 2(fi+)úx.

Noting that (fi+)ú : Hk(Sk) æ Hk(Dk
/ˆD

k) is an isomorphism, we can
change basis via (fi+)ú and via [a+]ú to see that

ˆk1(x) = 2x.

If k is even, we have

(idú +[≠x]ú)((fi+)ú ü (fi+ ¶ R)ú)(x) = (idú +[≠x]ú) ((fi+)úx, ≠(fi+)úx, )
= (fi+)úx ≠ (fi+)úx

= 0.
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21.6 Summary
Today, we saw:

Theorem 21.6.1. The cellular chain complex of RP
k for k even is:

. . . 0 æ A
◊2
// A

0
// A

◊2
// . . .

0
// A

◊2
// A

0
// A // 0 æ . . .

where the highest-degree copy of A is in degree k and the last copy of A is
in degree 0. The cellular chain complex of RP

k for k odd is:

. . . 0 æ A
0
// A

◊2
// . . .

0
// A

◊2
// A

0
// A // 0 æ . . .

where the highest-degree copy of A is in degree k and the last copy of A is
in degree 0.

Exercise 21.6.2. For all k Ø 3, compute the homology groups of RP
k for

A = Z/2Z and A = Z.


