Questions?

- Attaching map of n-cell in $\mathbb{R P}^{n}$?

$$
\mathbb{R}^{n}=\left\{L \subset \mathbb{R}^{n+1} \mid L \text { line, } O \in L\right\}
$$

Recall: (1) \exists projection map $S^{n} \rightarrow \mathbb{R} P^{n}$
$v \mapsto$ the unique line $L v$ containing v and the origin
northern
hemisphere
(2) $D^{n} \xrightarrow{\text { hemisphere }} S^{n} \rightarrow \mathbb{R} P^{n}$ this composition is onto. why?

pop the disk up

Given $L \in \mathbb{R} P^{n}, \exists$ two points $\pm v \in L \cap S^{n}$

$$
V=\left(v_{1}, \ldots, v_{n}, v_{n+1}\right) \in \mathbb{R}^{n+1}
$$

$$
-V=\left(-v_{1}, \ldots,-v_{n 1}-v_{n+1}\right)
$$

Hence, either v or $-v$ has non-negative $(n+1)^{\text {st }}$ coordinate Impossible that both V_{n+1} and $-V_{n+1}$ are nonnegative: at least one must be in northern hemisphere
(3) And $\partial D^{n} \rightarrow \mathbb{R} P^{n}$ has image $\mathbb{R} P^{n-1}$

$$
S^{n} \supset S^{n-1} \ni V \longmapsto L v \subset \mathbb{R}^{n+1}
$$

Every such line comes from an equatorial vector

To create $\mathbb{R} P^{n}$, we just need one disk attached to $\mathbb{R} P^{n-1}$ (glue D^{n} from (2) using attaching map from (3))
(4) Upshot: $\mathbb{R P}^{n}=\frac{\mathbb{R} P^{n-1} \Perp D^{n}}{\phi(v)=L_{v}}$

The quotient map is the attaching map (just need to get the dimension right)

- One-point compactification and local compactness

Definition: Fix a top. space x. The one-point compactification of x is the space $X^{+}:=X \cup\{*\}$, topologized so
U is open iff:
(1) $U=U \cap X$ and U open in X
(2) U^{c} is closed and compact

Last time:

- Decided to study collection of cts. functions $f: s^{n} \rightarrow s^{n}$ (up to homotopy)

Theorem: Fix $d \in \mathbb{Z}, n \geq 1$. Then, \exists a cts. map $f: s^{n} \rightarrow s^{n}$ s.t. \forall abelian gp. $A, f_{*}: H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}\right)$ is multiplication by $d .-3 \cdot a=-a-a-a$

$$
\begin{aligned}
\text { Example } \left.(n=1): \exists f: S^{\prime} \rightarrow S^{\prime} \text { st. } \frac{A}{} \quad \frac{H_{1}\left(S^{\prime}\right)}{\mathbb{Z}} \begin{array}{r}
\mathbb{Z} \\
\mathbb{Z} \quad f_{*} \\
\mathbb{Z}
\end{array}\right) \mathbb{Z} \\
1 \mapsto d
\end{aligned}
$$

$$
\begin{array}{lll}
\mathbb{Z} / 2 \mathbb{Z} & \mathbb{Z} / 2 \mathbb{Z} & \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z} \\
& {[1] \mapsto\left\{\begin{array}{lll}
{[1], \text { d odd }} \\
{[00], \text { deven }}
\end{array}\right.} \\
& &
\end{array}
$$

$$
\begin{aligned}
& \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \\
& (a, b)
\end{aligned}
$$

Fact: Every cts. $f: S^{n} \rightarrow S^{n}$ (regardless of A) induces "mull. by d " on $H_{n} . f \sim g \Leftrightarrow$ these d are equal
Definition: This d is the degree of f
Corollary: $\forall n \geqq 1$, the collection $\left\{f: s^{n} \rightarrow s^{n} c t s / h o m o t o p y\right\}$ is in bijection with \mathbb{Z}.
Further, $\operatorname{deg}(f \circ g)=\operatorname{deg}(f) \cdot \operatorname{deg}(g)$
This is not a group isomorphism because operation on \mathbb{Z} is + , not cult., to make it a group. But there is another operation on the numerator that does make it a group.
Construction:
Fix two functions $f_{1}, f_{2}: D^{n} \rightarrow D^{n}$ s.t. $f_{1}\left(\partial D^{n}\right) \subset \partial D^{n}$ $f_{2}\left(\partial D^{n}\right) \subset \partial D^{n}$
As a result, the induced maps $\underline{f_{1}}, \underline{f_{2}}: D^{n} / \partial D^{n} \rightarrow D^{n} / \partial D^{n} \cong s^{n}$ \cong

Choose an embedding (cts. injection)

$$
j: D^{n} \Perp D^{n} \hookrightarrow D^{n}
$$

Pinch map:

$$
\begin{aligned}
& D^{n} / j\left(\operatorname{int}\left(D^{n}\right) \Perp \operatorname{int}\left(D^{n}\right)\right) \\
& \cong S^{n} \vee S^{n}
\end{aligned}
$$

$$
S^{n} \cong D^{n} / a D^{n}
$$

This is pinch $=$ pinch $_{j}$
Homotopic to this pinch map:

Send white part to base point (constant function, hence cts.)
$f_{1} \# f_{2}$ is homotopic to:

S^{n}

$$
S^{n} \cong D^{n} / \partial D^{n}
$$

i.e.

Ex. $(n=1)$

