
Reading 20

Maps between spheres

Last time we saw that understanding the di�erentials ˆk in the cellular chain
complex boils down to understanding maps between spheres, and then un-
derstanding what the induced map Hk(Sk) æ Hk(Sk) is.

Suppose our coe�cient abelian group is some abelian group A. Recall
that for any integer d œ Z, the “multiplication by d” map

d : A æ A, a ‘æ da

is a group homomorphism1.

Example 20.0.1. If d = 0, then the map d is the zero map.
When d = 1, the map is the identity map.
When d = ≠1, the map sends any element a to its additive inverse.
When d = 3, the map sends any element a to a + a + a.

Today we prove an amazing fact about the topology of spheres.

Theorem 20.0.2. For any integer d œ Z and any dimension k Ø 1, there
exists a continuous function

fd : S
k æ S

k

so that – for any abelian group A – the induced map on homology

fd : Hk(Sk; A) æ Hk(Sk; A)
1
If A is not abelian, this statement is false. For example, G æ G, x ‘æ x

2
is typically

not a group homomorphism if G is not abelian. This is because x
2
y

2 ”= xyxy in general.

Even the map x ‘æ x
≠1

is typically not a group homomorphism from G to itself.
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176 READING 20. MAPS BETWEEN SPHERES

is, after changing basis to A ≥= H
k(Sk; A), the multiplication-by-d map.

In particular, taking A = Z, any group homomorphism Z æ Z can be
realized as the induced map on kth homology of some continuous function
S

k æ S
k.

Let A = Z. Then a continuous function f : S
k æ S

k determines, by
change-of-basis for Hk(Sk;Z), a group homomorphism Z æ Z, and in par-
ticular, an integer d.2 A posteriori, we abstractly know that fú must be a
homomorphism that sends every element x œ Hk(Sk) to some multiple dx.

Definition 20.0.3. Given a continuous function f : S
k æ S

k, let d be the
integer for which fú(x) = dx in Hk. We call d the degree of f .

Remark 20.0.4. Here is an even more amazing fact: The degree of f com-
pletely classifies the homotopy class of a function f . That is, two maps
f, g : S

k æ S
k are homotopic if and only if their induced maps on homol-

ogy (with integer coe�cients) are equal. We do not have the machinery to
prove this classification result at the moment, but this fact is a consequence
of a theorem called the Hurewicz Theorem. You can look it up if you are
interested – it is a standard and often-used result in algebraic topology.

Theorem 20.0.2 states, in fact, that in any dimension k Ø 1, and for any
integer d, there exists a map of degree d between k-dimensional spheres.

20.1 Rectilinear embeddings of disks
Definition 20.1.1 (Rectilinear embeddings). A map j : D

n æ D
n is called

a rectilinear embedding if

(i) there exists a vector a0 and a positive real number t for which j(x) =
a0 + tx, and

(ii) j is an injection.

Fix two rectilinear embeddings j1 and j2. We will say that the map

j1
·

j2 : D
n

·
D

n æ D
n

is also a rectilinear embedding if j1
‡

j2 is an injection.
2
Any group homomorphism ZtoZ is determined by the image of 1 – the image of 1 is

the integer d here.
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Remark 20.1.2. Concretely, j1
‡

j2 is a map sending x to j1(x) is x is in
the first copy of D

n, and to j2(x) if x is in the second copy of D
n. To demand

that j1
‡

j2 is an injection is equivalent to demanding that j1 and j2 have
disjoint images.

20.2 The pinch map
Fix a rectilinear embedding j1

‡
j2 : D

n
‡

D
n æ D

n. Then the map

pinch
j1,j1 : D

n
/ˆD

n æ (Dn
/ˆD

n) ‚ (Dn
/ˆD

n)

defined by

[x] ‘æ

Y
__]

__[

[ˆD
n] x ”œ j1(Dn) fi j2(Dn)

[j≠1
1 (x)] x œ j1(Dn)

[j≠1
2 (x)] x œ j2(Dn).

is called the pinch map associated to j1 and j2.

Remark 20.2.1. Informally, the pinch map collapses all points outside the
images of j1 and j2 to a single point. By continuity, it also collapses all points
along the boundary of j1(Dn) and j2(Dn) to a single point.

For clarify, it may help to label the two disks as D
n

1 and D
n

2 and label the
rectilinear embeddings accordingly as ji : D

n

i
æ D

n. Then the pinch map
has codomain given by (Dn

1 /ˆD
n

1 ) ‚ (Dn

2 /ˆD
n

2 ).

Definition 20.2.2. Choose further a homeomorphism „ : D
n
/ˆD

n æ S
n.

Then the composition

S
n

pinch

++

„
≠1
// D

n
/ˆD

n

pinchj1,j2

// (Dn
/ˆD

n) ‚ (Dn
/ˆD

n)
„‚„

// S
n ‚ S

n

is also called the pinch map. Note that the pinch map for D
n
/ˆD

n has a
subscript j1, j2, but when denoting the pinch map on spheres, we drop the
subscripts and suppress the dependency.

Let us label the two copies of S
n by S

n

–
, S

n

—
for concreteness.
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Figure 20.2.3. Though we will not prove it in these notes, for any choice of
j1 and j2, the pinch map on spheres is homotopic to collapsing the equator.
(This is one reason to call the map on spheres a pinch map.) An image of
collapsing equators is depicted above for the cases n = 1 and n = 2. On the
left is depicted S

n, and in bold its equator. On the right is the wedge sum
S

n ‚ S
n, with image of the equator under the pinch map indicated by a dark

dot.
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Lemma 20.2.4. Under the identification

Hn(Sn

–
‚ S

n

—
) ≥= Hn(Sn

–
) ü Hn(Sn

—
) (20.2.0.1)

we have that (pinch)ú is the diagonal embedding

(pinch)ú =
A

idHn(Sn)
idHn(Sn)

B

.

That is, (pinch)ú(a) = (a, a) œ Hn(Sn

–
) ü Hn(Sn

—
).

Proof. Recall from Remark 17.2.7 that the isomorphism (20.2.0.1) is induced
by the maps

p– : S
n

–
‚ S

n

—
æ S

n

–
, p— : S

n

–
‚ S

n

—
æ S

n

—
.

Let’s recap what we mean here for the reader’s convenience. The map p–

acts by the identity on S
n

–
and for all x œ S

n

—
, we have p–(x) = x0 œ S

n

–
.

Likewise, p— acts by the identity on S
n

—
and sends any x œ S

n

–
to x0 œ S

n

—
.

Then the map sending

y ‘æ ((p–)ú(y), (p—)ú(y)) œ Hn(Sn

—
) ü Hn(Sn

—
)

is the isomorphism (20.2.0.1). So to understand (pinch)ú, it su�ces to un-
derstand the compositions p– ¶ pinch and p— ¶ pinch.

In the following diagram, the top row is the composition of the pinch map
with p–:

S
n

„
≠1
//

pinch

++

D
n
/ˆD

n

pinchj1,j2

// (Dn
/ˆD

n) ‚ (Dn
/ˆD

n)
„‚„

//

p
Õ
–

++

S
n ‚ S

n

p–
// S

n

D
n
/ˆD

n

≥= „

OO

// D
n
/ˆD

n
.

≥= „

OO

(The dashed arrow is the unique continuous map making the above diagram
commute.) Then p

Õ
–

is rather easy to understand: It is the identity on the
– copy of D

n
/ˆD

n, and is the constant map on the — copy. Composing
everything in sight, we conclude that the horizontal dashed arrow is the map

[x] ‘æ

Y
]

[
[ˆD

n] x ”œ j1(Dn)
[j≠1

1 (x)] x œ j1(Dn).
(20.2.0.2)
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Because j1 is rectilinear, we know j1(y) = a1 + t1y for some a1 œ D
n and

t1 > 0. Such a j1 is homotopic to the identity map of D
n as follows: We may

first deform the parameter a1 to equal zero, then scale t1 to 1. This results
in a homotopy of (20.2.0.2) to the identity map of D

n
/ˆD

n. We conclude
that

(„≠1 ¶ p– ¶ pinch ¶„)ú = idHn(Dn/ˆDn) .

We may likewise study the diagram

S
n

„
≠1
//

pinch

++

D
n
/ˆD

n

pinchj1,j2

// (Dn
/ˆD

n) ‚ (Dn
/ˆD

n)
„‚„

//

p
Õ
—

++

S
n ‚ S

n

p—
// S

n

D
n
/ˆD

n

≥= „

OO

// D
n
/ˆD

n
.

≥= „

OO

A similar argument shows that the dashed horizontal arrow is

[x] ‘æ

Y
]

[
[ˆD

n] x ”œ j2(Dn)
[j≠1

1 (x)] x œ j2(Dn)

which is homotopic to the identity function on D
n
/ˆD

n. Thus,

(„≠1 ¶ p— ¶ pinch ¶„)ú = idHn(Dn/ˆDn) .

We conclude
(p– ¶ pinch)ú = (p— ¶ pinch)ú = idHn(Sn) .

This proves the claim.

Remark 20.2.5. Note that the map pinchú is, as a result of the above,
independent of our choices of j1, j2, and „. (In contrast, pinch is dependent.
It does turn out that it is independent up to homotopy when n Ø 2; when
n = 1, the homotopy class of pinch may change based on the choices of j1
and j2. To fully understand why, we would need to study something called
the fundamental group of S

1, and also the Eckmann-Hilton argument for
S

n
, n Ø 2. This will be included in next semester’s topology course, if you

choose to take it.)
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20.3 Maps from a wedge of spheres
Construction 20.3.1 (Wedge sum of maps). Choose x0 œ S

n and let S
n‚S

n

be the wedge sum obtained by gluing together the point x0 in both copies of
S

n.
Suppose that f, g : S

n æ Y are continuous maps such that f(x0) = g(x0).
Then, by the universal property of quotient spaces, we obtain a continuous
map

f ‚ g : S
n ‚ S

n æ Y.

Remark 20.3.2. For concreteness, let us denote by S
n

–
and S

n

—
the two copies

of S
n that we glue to form S

n ‚ S
n, so that S

n ‚ S
n = S

n

–
‚ S

n

—
. Then f ‚ g

is a function which acts by

f ‚ g(x) =

Y
]

[
f(x) x œ S

n

–

g(x) x œ S
n

—
.

Note that if [x0] œ S
n ‚ S

n is the “glued” point, the above function is well-
defined because f(x0) = g(x0).3

Lemma 20.3.3. Under the identification Hn(Sn

–
) ü Hn(Sn

—
) ≥= Hn(Sn

–
‚ S

n

—
),

we have that (f ‚ g)ú =
1

fú gú
2

– a 1-by-2 matrix with codomain given
by Hn(Y ).

Proof. Let i– : S
n

–
æ S

n

–
‚S

n

—
be the inclusion map, and likewise for i—. Then

we know from Remark 17.2.7 that the map on homology

Hn(Sn

–
) ü Hn(Sn

—
) æ Hn(Sn

–
‚ S

n

—
)(a, b) ‘æ i–(a) + i—(b)

is the identification in the hypothesis of the Proposition. So let us study the
composition

Hn(Sn

–
) ü Hn(Sn

—
)

(i–)ú+(i—)ú
// Hn(Sn

–
‚ S

n

—
) (f‚g)ú

// Hn(Y ).

3
As you might anticipate, just as we can create a wedge sum of spaces, one can also

create a wedge sum of functions. Concretely, if f : W æ Y and g : X æ Y are continuous

functions for which f(w0) = g(x0), then we can glue w0 to x0 and we can define f ‚ g :

W ‚ X æ Y in the obvious way.
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We see that any element (a, 0) œ Hn(Sn

–
) ü Hn(Sn

—
) is sent to the element

(f ‚ g ¶ ia)ú(a)

and likewise, (0, b) is sent to (f ‚ g ¶ ib)ú(b). Thus, the above composition
sends

(a, b) ‘æ (f ‚ g ¶ ia)ú(a) + (f ‚ g ¶ ib)ú(b).
Moreover, by design f ‚ g ¶ ia = f and f ‚ g ¶ ib = g. Thus, we conclude that

(a, b) ‘æ fú(a) + gú(b)

finishing the proof.

20.4 Summing maps from spheres
Suppose now that the homeomorphism „ : D

n
/ˆD

n æ S
n is chosen so that

„([ˆD
n]) = x0. Given two functions f, g : S

n æ Y for which f(x0) = g(x0),
we obtain a new map via the composition

S
n pinch≠≠≠æ S

n ‚ S
n f‚g≠≠æ Y

In this course, we will denote this composition by

f˘g. (20.4.0.1)

Remark 20.4.1. The map (20.4.0.1) depends on the pinch map. And the
pinch map involves choices. When n = 1, di�erent choices of j1 and j2 may
result in non-homotopic pinch maps. (See Remark 20.2.5.) As we will see
shortly, however, (f˘g)ú is independent of all choices.

The following is the main result that allows us to prove the main theorem
of today’s lecture.

Proposition 20.4.2. Let f, g : S
n æ Y be continuous functions such that

f(x0) = g(x0). Then for any abelian group A, we have that

(f˘g)ú = fú + gú on nth homology.

That is, for any x œ Hn(Sn; A), we have

(f˘g)ú(x) = fú(x) + gú(x) œ Hn(Y ; A).
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Remark 20.4.3. In homotopy theory (a branch of topology) one often calls
f˘g the sum of f and g – yes, as though we can add functions. It does
turn out that the collection of continuous functions from a sphere to a fixed
target Y has an addition operation, well-defined up to homotopy, so long as
n Ø 2 (hence the terminology of “sum”). In fact, the collection of continuous
functions from S

n æ Y that send x0 to a fixed y0 œ Y , modulo homotopy,
turns out to be an abelian group! (For n = 1, this group is not abelian,
but is still a group – the fundamental group of Y based at y0.) It turns
out that these homotopy groups of Y are far more powerful invariants of Y

than its homology groups, but we will not discuss these invariants until next
semester. This semester, we keep our focus on homology.

For now, note that the Proposition above tells us that the sum of f and g

has the e�ect of sum on (the induced maps on) nth homology. This further
motivates the term “sum” of maps out of a sphere.

Isn’t it amazing? Who knew that one could even dream of having an
abelian group structure on a collection of (homotopy classes of) continuous
maps? And who could have anticipated that such a group structure is re-
spected by induced maps on homology?

Proof of Proposition 20.4.2. Combine Lemma 20.2.4 and Lemma 20.3.3.

20.5 Positive degree maps between circles
Here is an immediate corollary of Proposition 20.4.2:

Corollary 20.5.1. For any positive integer d, any positive integer n, and
any abelian group A, there exists a continuous map f : S

n æ S
n so that the

induced map on nth homology is given by a ‘æ ad. In particular, there exist
degree d maps.

Proof. For d = 1, we may take f to be the identity homomorphism.
By induction, suppose we have produced a map fd≠1 : S

n æ S
n of degree

d ≠ 1. Then let f = fd≠1˘ idSn . Let Y = S
n, and apply Proposition 20.4.2:

We have that – for all a œ Hn(Sn; A) –

fú(a) = (fd≠1)úa + idú a = (d ≠ 1)a + a = da.
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Exercise 20.5.2. Because R2 ≥= C, we can think of S
1 as the set of all unit

complex numbers. Note that for all z œ S
1, and any integer d, z

d œ S
1.

Prove that the function S
1 æ S

1 given by z ‘æ z
d is a degree d map.

(You are best equipped to tackle the case d Ø 0 at the moment, but you can
tackle the d < 0 case, too, if you are impatient.)

20.6 Negative degree maps between circles
What might seem surprising is that there exist maps of negative degree be-
tween spheres. We will prove this for 1-dimensional spheres (e.g., circles).
You will prove in homework, using the naturality of the Mayer-Vietoris se-
quence, that this implies that there are negative-degree maps between spheres
of any positive dimension.

Consider the function

[≠1, 1] æ [≠1, 1] t ‘æ 1 ≠ t.

This is a homeomorphism from D
1 to itself. Because the homoemorphism

sends elements of ˆD
1 to elements of ˆD

1, we have an induced map

f≠ : D
1
/ˆD

1 æ D
1
/ˆD

1
, [t] ‘æ [f(t)].

Lemma 20.6.1. („¶f≠ ¶„
≠1)˘ id : S

1 æ S
1 is homotopic to a constant map.

Proof. It su�ces to prove that the dashed horizontal arrow in the commuting
diagram

S
1

„
≠1
//

pinch

++

D
1
/ˆD

1
pinchj1,j2

// (D1
/ˆD

1) ‚ (D1
/ˆD

1)
„‚„

// S
1 ‚ S

1
//

„¶f≠„
≠1‚id
// S

1

D
1
/ˆD

1

≥= „

OO

// D
1
/ˆD

1
.

≥= „

OO

is homotopic to a constant map. Note that all „ and „
≠1 in the composition

cancel, and we are left to study a particularly simple map.
Let us first understand pinch

j1,j2 . Note that the image of j1 is some
interval [a1, b1] and likeiwise j2(D1) = [a2, b2]. Let us assume without loss of
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generality that a1 < b1 < a2 < b2.4 Then pinch
j1,j2 has the e�ect of sending

x ‘æ

Y
________]

________[

[ˆD
1] x œ [0, a1]

[j≠1
1 (x)] œ (D1

/ˆD1)– x œ [a1, b1]
[ˆD

1] x œ [b1, a2]
[j≠1

2 (x)] œ (D1
/ˆD1)— x œ [a2, b2]

[ˆD
1] x œ [b2, 1].

Note, importantly, that both j
≠1
1 and j

≠1
2 are non-decreasing functions by

the assumption that t1, t2 > 0 (in the definition of rectilinearity). We see
that the dashed horizontal arrow is thus given by

x ‘æ

Y
________]

________[

[1] x œ [0, a1]
[≠j

≠1
1 (x)] œ D

1
/ˆD1 x œ [a1, b1]

[≠1] x œ [b1, a2]
[j≠1

2 (x)] œ D
1
/ˆD1 x œ [a2, b2]

[1] x œ [b2, 1].

where we note the minus sign in ≠j
≠1
1 . Of course, [1] = [≠1] in D

1
/ˆD

1, but
we write the above to note that we may now choose a straightline homotopy
from the dashed horizontal arrow to the constant map with value [1].

Corollary 20.6.2. („ ¶ f≠ ¶ „
≠1) is a map of degree -1.

Proof. Any constant map induces the zero map on all higher homology
groups. By Lemma 20.6.1, we thus know that ((„ ¶ f≠ ¶ „

≠1)˘ id)ú is the
zero map on H1. On the other hand, Proposition 20.4.2 tells us

((„ ¶ f≠ ¶ „
≠1)˘ id)ú = („ ¶ f≠ ¶ „

≠1)ú + idú .

Thus,
(„ ¶ f≠ ¶ „

≠1)ú = ≠ idú = ≠ idH1(S1)

completing the proof.

Corollary 20.6.3. For any integer d œ Z, there exists a continuous map
f : S

1 æ S
1 of degree d.

4
The case a2 < b2 < a1 < b1 will be left to the reader.



186 READING 20. MAPS BETWEEN SPHERES

Proof. Corollary 20.5.1 settles the case of d positive. For d = 0 one may take
(any map homotopic to) a constant map.

For d = ≠1, we know that the map f≠1 := „ ¶ f≠ ¶ „
≠1 is a degree -1

map. By induction, and Proposition 20.4.2, we see that f≠d := f≠1˘f≠d+1 is
a degree -d map.

Exercise 20.6.4. You may want a more concrete model of („ ¶ f≠ ¶ „
≠1).

Let’s explore.
Because R2 ≥= C, we can think of S

1 as the set of all unit complex numbers.
If z is a non-zero complex number, there is of course an associated complex
number z

≠1 = 1/z. Concretely, if z = x + iy, we have

1
z

= x ≠ iy

x2 + y2 .

In particular, the operation z ‘æ 1/z restricts to a much simpler formula
along the circle:

(x, y) ‘æ (x, ≠y).

In either case, we will call this map

z
≠1 : S

1 æ S
1
.

Prove that z
≠1 is homotopic to („ ¶ f≠ ¶ „

≠1).


