Reading 19

The other cellular differentials

Last time, we studied 0; in the cellular chain complex of a CW complex.
Today we’ll study ds. In what follows, you can replace 2,1,0 by n,n—1,n—2
to understand the differential 0,,.

Let X be a CW complex. We let X? and X' denote the 2- and 1-skeleta
of X, respectively.

By definition, 2nd differential in the cellular chain complex of X is a map

Hy(X2/XY) 2 Hy (X' XO).

0y is, by definition, the composition of the following maps (where the iso-
morphisms are replaced by their inverses):

o

Hy (U N\ Vy) —2 > Hy(Uy) & Hy(Va) —= Hy (V) e (XY
(17.3.0.1)*lg (ql,n)*l
Hy(X?/X") —> Hy(Us1 N Vo) Hy(X1/X0),
(19.0.0.1)

Let us recall some of the constituents of the diagram above:

(i) X?/X" is the quotient of the 2-skeleton by the 1-skeleton. This is
(homeomorphic to) a wedge sum of 2-spheres.

(i) U, is the disjoint union of a large open ball in each 2-cell of X?/X!.
In particular, Us; is homotopy equivalent a disjoint union of points.

(iii) V2, is a small open neighborhood of the point (given by the equivalence
class [X']). By choosing V51 to be the union of [X'] with a small
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170 READING 19. THE OTHER CELLULAR DIFFERENTIALS

open neighborhood of dD? for each a € Ay, we see that the inclusion
pt — V5 is a homotopy equivalence.

(iv) Thus, Uy N Vs is a disjoint union of “shells,” or of “annuli” in each
2-cell of X?/X"; each component is homeomorphic to S' x (1 —¢,1)
for some small positive e. Thus we have a homotopy equivalence Us; N

- 1
‘/2»1 — HaGAQ ST

(v) Vs is a small open neighborhood of the 1-skeleton of X?2. The inclusion
X1 — V4 is a homotopy equivalence.

(vi) Uy is a disjoint union of a large open ball in each 2-cell of X?. Note
that there is a natural homeomorphism between U, and U, ;, precisely
because we can identify the 2-cells of X? with those of X2/X!. As a

result, one has a homeomorphism

UsnNVy=Uzp NVag.

(vii) The map ¢y is the quotient map X' — X1/ X0

19.1

Let us examine the Mayer-Vietoris sequence associated to the cover {Us 1, Va1 }.
We study the following portion:

Hy(Usp) ® Ha(Va) L HQ(X2/X1> 4§>H1(U2¢1 NVa1) _h Hi(Usy) ® Hi(Vay).

By (ii) and (iii) we see that the first and last groups above are (isomorphic
to) zero. By exactness, we conclude that § is an isomorphism.! So we have
understood the first map in (19.0.0.1): It identifies the 2nd homology groups
of X?/X! with the first homology groups of Ui N Vo1 >~ [aen, St

This first homology group is in turn identified with that of Uy N V5 via
the first vertical map in (19.0.0.1) — this vertical map is the map induced on
homology by the homeomorphism from (vi).

!This is, in fact, a way to produce an alternate proof to Proposition 17.2.6.
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19.2 The top row of (19.0.0.1)

Consider the following portion of the Mayer-Vietoris sequence associated to

the cover {Us, V5 }:

Hy(Us) & Ho(Va) —2= Hy(X2) —= Hy(Uy N Vo) —L Hy(Us) & Hy(Va).

Remark 19.2.1. The group Hy(Usz) @ Ha(V3) is zero, because Us is a disjoint
union of contractible spaces, and because? V5 is homotopy equivalent to a 1-
dimensional CW complex (namely, X') by (v). Thus, by exactness, d is an
injection.

We will not make great use of the fact that ¢ is an injection, but we
mention it here because, well, it’s true.

Again because U, is homotopy equivalent to a disjoint union of points,
H,(Us) is zero. Thus to understand ji, it suffices to understand the inclusion

But the domain is homotopy equivalent to a disjoint union of S's. For
concreteness, let us fix a 2-cell D2. Then the a component of Uy N V5 is
homotopy equivalent to a copy of S* of radius 1 — ¢ for some small € — this
is a copy of S! that is slightly shrunk from the usual S* = 9D?. And the a
component of U, N V5 is a slight thickening of this shrunk S! — some space
homeomorphic to S! times an open interval.

The map to V5 is the inclusion of this thickened S* into V5. Recall that
V5 is the union of the 1-skeleton X' with the collection of all elements x in
[aen, D2 of length |z| € [1 — ¢, 1]. By scaling the lengths of such an z to
length 1, we see that V5 is homotopy equivalent to X*.

In short, j; can be understood by taking a shrunk S' (of radius 1 — e,
say) inside D2, and homotoping it to the 1-skeleton X! by scaling its radius
to 1. This is the moment where the attaching map ¢, is crucial — this shows
that the inclusion of Uy NV, =~ [1,ca, S into Vj; is in fact homotopic to the

map
[Tea: IT S*— X1

acEA2

2Recall that the dimension of a CW complex bounds the non-triviality of the ho-
mology groups — Theorem 17.1.2. In particular, the 2-dimensional homology group of a
1-dimensional CW complex is zero.
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Upshot. The map H (Uy N V) — Hi(Vz) = H(X') in the top row
of (19.0.0.1) is simply the map

P Hi(S") — Hi(X")

aEA2

induced by the ¢,.

19.3 Conclusion

The last map in the definition of 0y is the map induced by the quotient
X! — X1/X° Composing everything, we see that the differential d, can be
understood via the change of basis

Ha(X?/ X1 Hy(X) =2 g (x0 /X0
| _a |+
@QE.AQ HI(Sl) @OZE-AI HI(Sl)

where the diagonally oriented map above is a result of the upshot. So, 03 may
be understood as a A; x As matrix where the (g, as)th entry is determined
by understanding the composition

St X X/XO

and composing the induced map on homology with the projection to the oy
factor:

H (8" — H{(X'/X°) = ®oen, Hi(SY) — H(Sh)

Importantly, this last projection map can be understood as the map induced
by pa, from Remark 17.2.7. So in fact, the cellular differential can be com-
pletely understood if one can understand, for each ay € Ay and a; € Ay, the
composition
St fozy xt 19 x1/x0 Iy gt

The exact same analysis can be performed verbatim by replacing 2,1,0
with k, k — 1,k — 2. Then the differential 0,, in the cellular chain complex is,
after a change of basis, obtained by a matrix

@akEAkafl(Skiw — @akfleﬂkfl Hyy (Skil)
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where the components of the matrix are understood by studying — for every
a € A and oy € Ap_1 — the composition

gk-1 Poky yh—1 BkoLE1 Xk:—l/Xk—2 Pag_1 Ggk-1



