Reading 19

The other cellular differentials

Last time, we studied ∂_{1} in the cellular chain complex of a CW complex. Today we'll study ∂_{2}. In what follows, you can replace $2,1,0$ by $n, n-1, n-2$ to understand the differential ∂_{n}.

Let X be a CW complex. We let X^{2} and X^{1} denote the 2- and 1-skeleta of X, respectively.

By definition, 2nd differential in the cellular chain complex of X is a map

$$
H_{2}\left(X^{2} / X^{1}\right) \xrightarrow{\partial_{2}} H_{1}\left(X^{1} / X^{0}\right) .
$$

∂_{2} is, by definition, the composition of the following maps (where the isomorphisms are replaced by their inverses):

$$
\begin{align*}
& \underset{(17.3 .0 .1)_{\star} \downarrow}{ } H_{1}\left(U_{2} \cap V_{2}\right) \xrightarrow{j_{1}} H_{1}\left(U_{2}\right) \oplus H_{1}\left(V_{2}\right) \longrightarrow H_{1}\left(V_{2}\right) \stackrel{(C W 4)}{\cong} H_{\left(q_{1}, 0\right) *}\left(X^{1}\right) \\
& H_{2}\left(X^{2} / X^{1}\right) \underset{\delta}{\longrightarrow} H_{1}\left(U_{2,1} \cap V_{2,1}\right) \tag{19.0.0.1}\\
& H_{1}\left(X^{1} / X^{0}\right) \text {. }
\end{align*}
$$

Let us recall some of the constituents of the diagram above:
(i) X^{2} / X^{1} is the quotient of the 2 -skeleton by the 1 -skeleton. This is (homeomorphic to) a wedge sum of 2 -spheres.
(ii) $U_{2,1}$ is the disjoint union of a large open ball in each 2-cell of X^{2} / X^{1}. In particular, $U_{2,1}$ is homotopy equivalent a disjoint union of points.
(iii) $V_{2,1}$ is a small open neighborhood of the point (given by the equivalence class $\left[X^{1}\right]$). By choosing $V_{2,1}$ to be the union of $\left[X^{1}\right]$ with a small
open neighborhood of ∂D_{α}^{2} for each $\alpha \in \mathcal{A}_{2}$, we see that the inclusion $p t \rightarrow V_{2,1}$ is a homotopy equivalence.
(iv) Thus, $U_{2,1} \cap V_{2,1}$ is a disjoint union of "shells," or of "annuli" in each 2-cell of X^{2} / X^{1}; each component is homeomorphic to $S^{1} \times(1-\epsilon, 1)$ for some small positive ϵ. Thus we have a homotopy equivalence $U_{2,1} \cap$ $V_{2,1} \simeq \coprod_{\alpha \in \mathcal{A}_{2}} S^{1}$.
(v) V_{2} is a small open neighborhood of the 1-skeleton of X^{2}. The inclusion $X^{1} \rightarrow V_{2}$ is a homotopy equivalence.
(vi) U_{2} is a disjoint union of a large open ball in each 2-cell of X^{2}. Note that there is a natural homeomorphism between U_{2} and $U_{2,1}$, precisely because we can identify the 2-cells of X^{2} with those of X^{2} / X^{1}. As a result, one has a homeomorphism

$$
U_{2} \cap V_{2} \cong U_{2,1} \cap V_{2,1}
$$

(vii) The map $q_{1,0}$ is the quotient map $X^{1} \rightarrow X^{1} / X^{0}$.

19.1δ

Let us examine the Mayer-Vietoris sequence associated to the cover $\left\{U_{2,1}, V_{2,1}\right\}$. We study the following portion:

$$
H_{2}\left(U_{2,1}\right) \oplus H_{2}\left(V_{2,1}\right) \xrightarrow{i_{2}} H_{2}\left(X^{2} / X^{1}\right) \xrightarrow{\delta} H_{1}\left(U_{2,1} \cap V_{2,1}\right) \xrightarrow{j_{1}} H_{1}\left(U_{2,1}\right) \oplus H_{1}\left(V_{2,1}\right) .
$$

By (ii) and (iii) we see that the first and last groups above are (isomorphic to) zero. By exactness, we conclude that δ is an isomorphism. ${ }^{1}$ So we have understood the first map in (19.0.0.1): It identifies the 2nd homology groups of X^{2} / X^{1} with the first homology groups of $U_{2,1} \cap V_{2,1} \simeq \coprod_{\alpha \in \mathcal{A}_{2}} S^{1}$.

This first homology group is in turn identified with that of $U_{2} \cap V_{2}$ via the first vertical map in (19.0.0.1) - this vertical map is the map induced on homology by the homeomorphism from (vi).

[^0]
19.2 The top row of (19.0.0.1)

Consider the following portion of the Mayer-Vietoris sequence associated to the cover $\left\{U_{2}, V_{2}\right\}$:

$$
H_{2}\left(U_{2}\right) \oplus H_{2}\left(V_{2}\right) \xrightarrow{i_{2}} H_{2}\left(X^{2}\right) \xrightarrow{\delta} H_{1}\left(U_{2} \cap V_{2}\right) \xrightarrow{j_{1}} H_{1}\left(U_{2}\right) \oplus H_{1}\left(V_{2}\right) .
$$

Remark 19.2.1. The group $H_{2}\left(U_{2}\right) \oplus H_{2}\left(V_{2}\right)$ is zero, because U_{2} is a disjoint union of contractible spaces, and because ${ }^{2} V_{2}$ is homotopy equivalent to a 1 dimensional CW complex (namely, X^{1}) by (v). Thus, by exactness, δ is an injection.

We will not make great use of the fact that δ is an injection, but we mention it here because, well, it's true.

Again because U_{2} is homotopy equivalent to a disjoint union of points, $H_{1}\left(U_{2}\right)$ is zero. Thus to understand j_{1}, it suffices to understand the inclusion

$$
U_{2} \cap V_{2} \rightarrow V_{2}
$$

But the domain is homotopy equivalent to a disjoint union of S^{1} s. For concreteness, let us fix a 2-cell D_{α}^{2}. Then the α component of $U_{2} \cap V_{2}$ is homotopy equivalent to a copy of S^{1} of radius $1-\epsilon$ for some small ϵ - this is a copy of S^{1} that is slightly shrunk from the usual $S^{1}=\partial D_{\alpha}^{2}$. And the α component of $U_{2} \cap V_{2}$ is a slight thickening of this shrunk S^{1} - some space homeomorphic to S^{1} times an open interval.

The map to V_{2} is the inclusion of this thickened S^{1} into V_{2}. Recall that V_{2} is the union of the 1 -skeleton X^{1} with the collection of all elements x in $\amalg_{\alpha \in \mathcal{A}_{2}} D_{\alpha}^{2}$ of length $|x| \in[1-\epsilon, 1]$. By scaling the lengths of such an x to length 1 , we see that V_{2} is homotopy equivalent to X^{1}.

In short, j_{1} can be understood by taking a shrunk S^{1} (of radius $1-\epsilon$, say) inside D_{α}^{2}, and homotoping it to the 1 -skeleton X^{1} by scaling its radius to 1 . This is the moment where the attaching map φ_{α} is crucial - this shows that the inclusion of $U_{2} \cap V_{2} \simeq \coprod_{\alpha \in \mathcal{A}_{2}} S^{1}$ into V_{2} is in fact homotopic to the map

$$
\coprod \varphi_{\alpha}: \coprod_{\alpha \in \mathcal{A}_{2}} S^{1} \rightarrow X^{1}
$$

[^1]Upshot. The map $H_{1}\left(U_{2} \cap V_{2}\right) \rightarrow H_{1}\left(V_{2}\right) \cong H_{1}\left(X^{1}\right)$ in the top row of (19.0.0.1) is simply the map

$$
\bigoplus_{\alpha \in \mathcal{A}_{2}} H_{1}\left(S^{1}\right) \rightarrow H_{1}\left(X^{1}\right)
$$

induced by the φ_{α}.

19.3 Conclusion

The last map in the definition of ∂_{2} is the map induced by the quotient $X^{1} \rightarrow X^{1} / X^{0}$. Composing everything, we see that the differential ∂_{2} can be understood via the change of basis

where the diagonally oriented map above is a result of the upshot. So, ∂_{2} may be understood as a $\mathcal{A}_{1} \times \mathcal{A}_{2}$ matrix where the (α_{1}, α_{2})th entry is determined by understanding the composition

$$
S^{1} \xrightarrow{\varphi_{\alpha_{2}}} X^{1} \rightarrow X^{1} / X^{0}
$$

and composing the induced map on homology with the projection to the α_{1} factor:

$$
H_{1}\left(S^{1}\right) \rightarrow H_{1}\left(X^{1} / X^{0}\right) \cong \oplus_{\alpha \in \mathcal{A}_{1}} H_{1}\left(S^{1}\right) \rightarrow H_{1}\left(S^{1}\right)
$$

Importantly, this last projection map can be understood as the map induced by $p_{\alpha_{1}}$ from Remark 17.2.7. So in fact, the cellular differential can be completely understood if one can understand, for each $\alpha_{2} \in \mathcal{A}_{2}$ and $\alpha_{1} \in \mathcal{A}_{1}$, the composition

$$
S^{1} \xrightarrow{\varphi_{\alpha_{2}}} X^{1} \xrightarrow{q_{1,0}} X^{1} / X^{0} \xrightarrow{p_{\alpha_{1}}} S^{1} .
$$

The exact same analysis can be performed verbatim by replacing $2,1,0$ with $k, k-1, k-2$. Then the differential ∂_{n} in the cellular chain complex is, after a change of basis, obtained by a matrix

$$
\oplus_{\alpha_{k} \in \mathcal{A}_{k}} H_{k-1}\left(S^{k-1}\right) \rightarrow \oplus_{\alpha_{k-1} \in \mathcal{A}_{k-1}} H_{k-1}\left(S^{k-1}\right)
$$

where the components of the matrix are understood by studying - for every $\alpha_{k} \in \mathcal{A}_{k}$ and $\alpha_{k-1} \in \mathcal{A}_{k-1}$ - the composition

$$
S^{k-1} \xrightarrow{\varphi_{\alpha_{k}}} X^{k-1} \xrightarrow{q_{k-1, k-1}} X^{k-1} / X^{k-2} \xrightarrow{p_{\alpha_{k-1}}} S^{k-1} .
$$

[^0]: ${ }^{1}$ This is, in fact, a way to produce an alternate proof to Proposition 17.2.6.

[^1]: ${ }^{2}$ Recall that the dimension of a CW complex bounds the non-triviality of the homology groups - Theorem 17.1.2. In particular, the 2-dimensional homology group of a 1-dimensional CW complex is zero.

