
Reading 19

The other cellular di�erentials

Last time, we studied ˆ1 in the cellular chain complex of a CW complex.
Today we’ll study ˆ2. In what follows, you can replace 2, 1, 0 by n, n≠1, n≠2
to understand the di�erential ˆn.

Let X be a CW complex. We let X
2 and X

1 denote the 2- and 1-skeleta
of X, respectively.

By definition, 2nd di�erential in the cellular chain complex of X is a map

H2(X2
/X

1) ˆ2≠æ H1(X1
/X

0).

ˆ2 is, by definition, the composition of the following maps (where the iso-
morphisms are replaced by their inverses):

H1(U2 fl V2)
j1
//

(17.3.0.1)ú ≥=
✏✏

H1(U2) ü H1(V2) // H1(V2) H1(X1)
≥=

(CW 4)
oo

(q1,0)ú
✏✏

H2(X2
/X

1)
”

// H1(U2,1 fl V2,1) H1(X1
/X

0).

(19.0.0.1)
Let us recall some of the constituents of the diagram above:

(i) X
2
/X

1 is the quotient of the 2-skeleton by the 1-skeleton. This is
(homeomorphic to) a wedge sum of 2-spheres.

(ii) U2,1 is the disjoint union of a large open ball in each 2-cell of X
2
/X

1.
In particular, U2,1 is homotopy equivalent a disjoint union of points.

(iii) V2,1 is a small open neighborhood of the point (given by the equivalence
class [X1]). By choosing V2,1 to be the union of [X1] with a small
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170 READING 19. THE OTHER CELLULAR DIFFERENTIALS

open neighborhood of ˆD
2
–

for each – œ A2, we see that the inclusion
pt æ V2,1 is a homotopy equivalence.

(iv) Thus, U2,1 fl V2,1 is a disjoint union of “shells,” or of “annuli” in each
2-cell of X

2
/X

1; each component is homeomorphic to S
1 ◊ (1 ≠ ‘, 1)

for some small positive ‘. Thus we have a homotopy equivalence U2,1 fl
V2,1 ƒ ‡

–œA2 S
1.

(v) V2 is a small open neighborhood of the 1-skeleton of X
2. The inclusion

X
1 æ V2 is a homotopy equivalence.

(vi) U2 is a disjoint union of a large open ball in each 2-cell of X
2. Note

that there is a natural homeomorphism between U2 and U2,1, precisely
because we can identify the 2-cells of X

2 with those of X
2
/X

1. As a
result, one has a homeomorphism

U2 fl V2 ≥= U2,1 fl V2,1.

(vii) The map q1,0 is the quotient map X
1 æ X

1
/X

0.

19.1 ”

Let us examine the Mayer-Vietoris sequence associated to the cover {U2,1, V2,1}.
We study the following portion:

H2(U2,1) ü H2(V2,1)
i2
// H2(X2

/X
1) ”

// H1(U2,1 fl V2,1)
j1
// H1(U2,1) ü H1(V2,1).

By (ii) and (iii) we see that the first and last groups above are (isomorphic
to) zero. By exactness, we conclude that ” is an isomorphism.1 So we have
understood the first map in (19.0.0.1): It identifies the 2nd homology groups
of X

2
/X

1 with the first homology groups of U2,1 fl V2,1 ƒ ‡
–œA2 S

1.
This first homology group is in turn identified with that of U2 fl V2 via

the first vertical map in (19.0.0.1) – this vertical map is the map induced on
homology by the homeomorphism from (vi).

1
This is, in fact, a way to produce an alternate proof to Proposition 17.2.6.
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19.2 The top row of (19.0.0.1)
Consider the following portion of the Mayer-Vietoris sequence associated to
the cover {U2, V2}:

H2(U2) ü H2(V2)
i2
// H2(X2) ”

// H1(U2 fl V2)
j1
// H1(U2) ü H1(V2).

Remark 19.2.1. The group H2(U2)üH2(V2) is zero, because U2 is a disjoint
union of contractible spaces, and because2

V2 is homotopy equivalent to a 1-
dimensional CW complex (namely, X

1) by (v). Thus, by exactness, ” is an
injection.

We will not make great use of the fact that ” is an injection, but we
mention it here because, well, it’s true.

Again because U2 is homotopy equivalent to a disjoint union of points,
H1(U2) is zero. Thus to understand j1, it su�ces to understand the inclusion

U2 fl V2 æ V2.

But the domain is homotopy equivalent to a disjoint union of S
1s. For

concreteness, let us fix a 2-cell D
2
–
. Then the – component of U2 fl V2 is

homotopy equivalent to a copy of S
1 of radius 1 ≠ ‘ for some small ‘ – this

is a copy of S
1 that is slightly shrunk from the usual S

1 = ˆD
2
–
. And the –

component of U2 fl V2 is a slight thickening of this shrunk S
1 – some space

homeomorphic to S
1 times an open interval.

The map to V2 is the inclusion of this thickened S
1 into V2. Recall that

V2 is the union of the 1-skeleton X
1 with the collection of all elements x in‡

–œA2 D
2
–

of length |x| œ [1 ≠ ‘, 1]. By scaling the lengths of such an x to
length 1, we see that V2 is homotopy equivalent to X

1.
In short, j1 can be understood by taking a shrunk S

1 (of radius 1 ≠ ‘,
say) inside D

2
–
, and homotoping it to the 1-skeleton X

1 by scaling its radius
to 1. This is the moment where the attaching map Ï– is crucial – this shows
that the inclusion of U2 fl V2 ƒ ‡

–œA2 S
1 into V2 is in fact homotopic to the

map ·
Ï– :

·

–œA2

S
1 æ X

1

2
Recall that the dimension of a CW complex bounds the non-triviality of the ho-

mology groups – Theorem 17.1.2. In particular, the 2-dimensional homology group of a

1-dimensional CW complex is zero.
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Upshot. The map H1(U2 fl V2) æ H1(V2) ≥= H1(X1) in the top row
of (19.0.0.1) is simply the map

n

–œA2

H1(S1) æ H1(X1)

induced by the Ï–.

19.3 Conclusion
The last map in the definition of ˆ2 is the map induced by the quotient
X

1 æ X
1
/X

0. Composing everything, we see that the di�erential ˆ2 can be
understood via the change of basis

H2(X2
/X

1) // H1(X1) (q2,1)ú
// H1(X1

/X
0)

m
–œA2 H1(S1)

≥=

OO

ü(Ï–)ú

55

//

m
–œA1 H1(S1)

≥=

OO

where the diagonally oriented map above is a result of the upshot. So, ˆ2 may
be understood as a A1 ◊A2 matrix where the (–1, –2)th entry is determined
by understanding the composition

S
1 Ï–2≠≠æ X

1 æ X
1
/X

0

and composing the induced map on homology with the projection to the –1
factor:

H1(S1) æ H1(X1
/X

0) ≥= ü–œA1H1(S1) æ H1(S1)
Importantly, this last projection map can be understood as the map induced
by p–1 from Remark 17.2.7. So in fact, the cellular di�erential can be com-
pletely understood if one can understand, for each –2 œ A2 and –1 œ A1, the
composition

S
1 Ï–2≠≠æ X

1 q1,0≠≠æ X
1
/X

0 p–1≠≠æ S
1
.

The exact same analysis can be performed verbatim by replacing 2, 1, 0
with k, k ≠ 1, k ≠ 2. Then the di�erential ˆn in the cellular chain complex is,
after a change of basis, obtained by a matrix

ü–kœAk
Hk≠1(Sk≠1) æ ü–k≠1œAk≠1Hk≠1(Sk≠1)
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where the components of the matrix are understood by studying – for every
–k œ Ak and –k≠1 œ Ak≠1 – the composition

S
k≠1 Ï–k≠≠æ X

k≠1 qk≠1,k≠1≠≠≠≠≠æ X
k≠1

/X
k≠2 p–k≠1≠≠≠æ S

k≠1
.


