
Reading 17

More on CW complexes, and
toward cellular homology

We have now seen some examples of CW complexes, the most mysterious
example being RP

n.
Today we are going to witness some facts about CW complexes, and state

a theorem about how to compute homology of a CW complex.

17.1 Dimension of a CW complex and homol-
ogy

Throughout, we assume that X is a CW complex that has finitely many cells
in each dimension. That is, for every n, An is a finite set.

Remark 17.1.1. This assumption is only necessary when we use the fact
that the homology of a disjoint union of finitely many points is the direct sum
of the homology of a single point. (This is a fact we deduced from Mayer-
Vietoris way back in Section 7.5.) If we seek to impose an additional axiom,
that the homology of an infinite disjoint union of spaces is the direct sum of
the homologies of each constituent space, one could remove this assumption
about finitely many cells in each dimension.

Later in this course, when we set up singular homology, we will see that
this axiom about the disjoint union of infinitely many spaces is, indeed,
satisfied by singular homology.
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And, it is actually not hard to see that every theorem we prove in this
lecture generalizes to the case of arbitrarily many cells in each dimension, so
long as our homology theory satisfies the infinite-direct-sum axiom. We do
not prove this generalization, so as not to get bogged down; the proofs are
no harder than in the case with finitely many cells in each dimension.

The following should start to give us some geometric intuition for what
homology can capture.

Theorem 17.1.2. Suppose X is an n-dimensional CW complex with finitely
many cells in each dimension. Then for all k > n, and for all abelian groups
A, we have that Hk(X; A) ≥= 0.

Proof. We proceed by induction on n. For the case n = 0, we know that
X = X

0 is a finite disjoint union of points. We have already computed the
homology of such a space – Hk indeed vanishes for k Ø 1.

Assume the result to be true for n ≠ 1. We let

U =
·

–œAn

Ball(0, 1).

That is, U is the disjoint union of the open balls of radius 1 inside each
n-cell. Note, then, that Hk(U ; A) vanishes for k Ø 1. (This is because U is
homotopy equivalent to a disjoint union of points.)

Let A be the set of those x œ D
n for which |x| œ (0, 1] and let

V =
Q

a
·

–œAn

A

R

b
€

X
n≠1

.

Then V deformation retracts to X
n≠1 (by sucking elements of A to S

n≠1) so
Hk(V ) ≥= Hk(Xn≠1). By the inductive hypothesis, these groups vanish for
k Ø n.

It is straightforward to see that U and V are open subsets of X, that
their union equals X, and we have

U fl V =
·

–œAn

(A \ S
n≠1).

This intersection is homotopy equivalent to a disjoint union of S
n≠1, and in

particular has vanishing homology in degrees n and larger.
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Thus, for all k Ø 1, the Mayer-Vietoris sequence contains the following
exact sequence:

. . . æ Hk(U) ü Hk(V ) æ Hk(X) æ Hk≠1(U fl V ) æ . . .

And for k Ø n + 1, both the first and last groups of the above sequence
vanish. This shows that k Ø n + 1 =∆ Hk(X) ≥= 0.

17.2 Wedges of spheres
We state the following without proof. You explored some of the underlying
ideas in homework.

Proposition 17.2.1. Let X be a topological space. The following are equiv-
alent.

(a) X is obtained by gluing k copies of S
n along a single point.

(b) X admits the structure of a CW complex with k n-cells and one 0-cell.
(When n = 0, this means X has k + 1 0-cells.)

(c) X is homeomorphic to the quotient
Q

a
·

1,...,k

D
n

R

b /≥

where the equivalence relation relates any all points in the boundary
spheres.

(d) There exists an n-dimensional CW complex Y
n, with k n-cells, and a

homeomorphism Y
n
/Y

n≠1 ≥= X.

Definition 17.2.2. Suppose X is a topological space satisfying any (hence
all) of the properties above. We say that X is a wedge of k n-spheres, or a
wedge sum of k n-spheres, or a bouquet of n-spheres. We use the notation

fl

a=1,...,k

S
n

to denote this wedge of spheres.
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Remark 17.2.3. In general, given two spaces X, Y and points x0 œ X, y0 œ
Y , topologists often write

X
fl

Y

to denote the space obtained from X
‡

Y by gluing x0 and y0.

Example 17.2.4. A bouquet of 5 0-spheres is a disjoint union of 6 points.
A bouquet of 2 1-spheres is (homeomorphic to) a figure 8.

Suppose X is a bouquet of k n-spheres. There are natural maps

i1, . . . , ik : S
n æ X

where ia includes the ath copy of S
n into X. These induce maps on homology

(ia)ú : Hm(Sn; A) æ Hm(X; A)

and hence we have a map
n

a=1,...,k

Hm(Sn; A) æ Hm(X; A) (17.2.0.1)

from the k-fold direct sum of Hm(Sn; A) to Hm(X; A).

Remark 17.2.5 (m = 0 case). When m = 0, the map (17.2.0.1) is only
an isomorphism for k = 1. We are, by now, used to arguments about H0.
Repeating the arguments in Section 8.3, the map (17.2.0.1) for m = 0 is, as
a matrix, a 1-by-k matrix all of whose entries are the identity. This map is
a surjection, with kernel isomorphic to A

ük≠1.

Proposition 17.2.6. Let X be a bouquet of k n-spheres. For all m Ø 1,
the map (17.2.0.1) is an isomorphism. In particular, if n Ø 1, we have:

Hm(X; A) ≥=

Y
__]

__[

A
ük

m = n

0 m ”= n, m Ø 1
A m = 0

and if n = 0, we have

Hm(X; A) ≥=

Y
]

[
A

ük+1
m = 0

0 m Ø 1.
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Proof. Fix n. We use Mayer-Vietoris and induction on k. The claim is
obvious for k = 1, because the map i1 : S

n æ X is a homeomorphism. So
assume the result is true for k ≠ 1 and let X be a wedge of k n-spheres.

We choose an open cover of X as follows. We let U be the union of the
first k ≠ 1 copies of S

n and a small neighborhood of the wedge point where
the spheres are glued together. Then U deformation retracts to the wedge of
the first k ≠ 1 spheres. We let V be a small open neighborhood of the kth
sphere, so that V deformation retracts onto the kth sphere. We then have:

Hm(U fl V ) // Hm(U) ü Hm(V ) // Hm(X) // Hm≠1(U fl V ) // . . .

Hm(x
k≠1 S

n) ü Hm(Sn)

≥=

OO

1m
a=1,...,k≠1 Hm(Sn)

2
ü Hm(Sn)

OO

where the top row is the Mayer-Vietoris sequence. Note that if m Ø 2,
then Hm(U fl V ) and Hm≠1(U fl V ) are both isomorphic to 0, so the mid-
dle horizontal arrow is an isomorphism by exactness. If m = 1, the map
H0(U fl V ) æ H0(U) ü H0(V ) is an injection (by repeating the arguments
in Section 8.3) , so the connecting map H1(X) æ H0(U fl V ) is the zero
map. It again follows that the middle horizontal arrow is an isomorphism by
exactness.

Because the bottom most vertical arrow is an isomorphism by induction,
we conclude that the composite map

Q

a
n

a=1,...,k≠1
Hm(Sn)

R

b ü Hm(Sn) æ Hm(X)

(which one can straightforwardly check is induced by the inclusions of the
appropriate copies of spheres) is an isomorphism, as desired.

Remark 17.2.7. There is another way to see that the map must be an
injection. For the reader’s edification we include it here. There will be a
pay-o�.

Let x0 œ X denote the point at which the spheres are glued together.
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We first prove that the map is an injection. For each a = 1, . . . , k define
pa : X æ S

n to be the map

x ‘æ

Y
]

[
x x is in the ath copy of S

n

x0 otherwise
.

Then for a, b œ {1, . . . , k}, we have

pb ¶ ia =

Y
]

[
idSn a = b

a constant map a ”= b

so we conclude that the composition

m
a=1,...,k Hm(Sn; A)

q
(ia)ú

// Hm(X; A)
((pa)ú)a=1,...,k

//

m
a=1,...,k Hm(Sn; A)

fib

✏✏

Hm(Sn; A)

ia

OO

Hm(Sn; A)

(where fib is the projection on the bth factor of the direct sum) is either the
zero map (when a ”= b) or the identity map (when a = b). Thus, the top row
is a map which, as a k-by-k matrix, is the identity matrix. We conclude that
(17.2.0.1) is an injection.

Combining this observation with the proof of Proposition 17.2.6, we ac-
tually see that the map q(ia)ú is an isomorphism, and the map ((pa)ú)a=1,...,k

is the inverse. This is important, so we record it here:
Upshot. Let Y be a topological space and fix a continuous map f :

Y æ X, where X = x
a=1,...,k S

n is a wedge of n-spheres. Then the induced
map on nth homology is given component-wise by the induced map of the
compositions pa ¶ f : Y æ X æ S

n. That is, fú (after the isomorphism
Hn(X) ≥= oplusHn(Sn)) is given by the map ((pa ¶ f)ú)a=1,...,k.

17.3 Cellular homology: The di�erential
Given an k-dimensional CW complex X = X

k, let Ak be the collection of
k-cells. We define a two-element open cover of X

k as follows.
First we set

Uk :=
·

–œAk

Ball(0, 1) µ
·

–œAk

D
k

–
.
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This is an open subset of X
k, being a union of open subsets of each D

k.
(Note that Ball(0, 1) is the open ball of radius 1 about the origin. It is equal
to the set D

k \ S
k≠1.)

Finally, let A µ D
k denote the set of points x for which |x| œ (0.9, 1].1

Then A is an open subset of D
k containing S

k≠1. We let

Vk :=
Q

a
·

–œAk

A

R

b
€

X
k≠1

.

Then Vk is an open subset of X
k. We note that Uk fi Vk = X

k, and that
Uk fl Vk is homotopy equivalent to a disjoint union of spheres:

Uk fl Vk ƒ
·

–œAk

S
k≠1

.

Finally, for every ≠1 Æ j Æ k, we let

qk,j : X
k æ X

k
/X

j

be the projection map to the quotient.2 (By convention, we let X
≠1 = ÿ.)

We let
Uk,j = qk,j(Uk) and Vk,j = qk,j(Vk).

We leave it to the reader to verify the following:

Proposition 17.3.1. For every ≠1 Æ j Æ k and 0 Æ k, we have:

(CW1) Uk,j, Vk,j are open subsets of X
k
/X

j.

(CW2) Uk,j fi Vk,j = X
k
/X

j

(CW3) Uk,j fl Vk,j ƒ ‡
–œAn

S
k≠1.

(CW4) The inclusion X
k≠1

/X
j æ Vk,j is a homotopy equivalence.

(CW5) Uk,j ƒ ‡
–œAk

pt.
1
The specific choice of 0.9 does not matter; for any 0 < ‘ < 1, we could consider those

x with |x| œ (1 ≠ ‘, 1].
2
Recall that if B µ A, then A/B is the quotient space A/ ≥ where ≥ is generated by

b, b
Õ œ B =∆ b ≥ b

Õ
.
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Remark 17.3.2. Consider the quotient map qk,k≠1 : X
k æ X

k
/X

k≠1. Then
qk,k≠1(Uk) µ Uk,k≠1, and likewise for Vk, so one has a continuous map

Uk fl Vk æ Uk,k≠1 fl Vk,k≠1. (17.3.0.1)

This map is a homeomorphism.

For all k Ø 1, consider the following diagram:

Hk≠1(Uk fl Vk) jk≠1
//

(17.3.0.1)ú
✏✏

Hk≠1(Uk) ü Hk≠1(Vk) // Hk≠1(Vk)

Hk(Xk
/X

k≠1)
”

// Hk≠1(Uk,k≠1 fl Vk,k≠1)
(17.3.0.2)

Here, the labeled arrows are the maps in the Mayer-Vietoris sequences asso-
ciated to the covers by {Uk, Vk} (for X

k) and {Uk,k≠1, Vk,k≠1} (for X
k
/X

k≠1).
The one unlabeled arrow is the projection to Hk≠1(Vk).

Now, the map Uk,k≠2 fl Vk,k≠2 æ Uk,k≠1 fl Vk,k≠1 is a homeomorphism,
so the vertical arrow is an isomorphism. Using further (CW4), we have a
diagram as follows:

Hk≠1(Uk fl Vk) //

(17.3.0.1)ú ≥=
✏✏

Hk≠1(Uk) ü Hk≠1(Vk) // Hk≠1(Vk) Hk≠1(Xk≠1)
≥=

(CW 4)
oo

Hk(Xk
/X

k≠1)
”

// Hk≠1(Uk,k≠1 fl Vk,k≠1)

Post-composing with the map on homology induced by the quotient map
X

k≠1 æ X
k≠1

/X
k≠2, we have a diagram of maps

Hk≠1(Uk fl Vk) jk≠1
//

(17.3.0.1)ú ≥=
✏✏

Hk≠1(Uk) ü Hk≠1(Vk) // Hk≠1(Vk) Hk≠1(Xk≠1)
≥=

(CW 4)
oo

(qk≠1,k≠2)ú
✏✏

Hk(Xk
/X

k≠1)
”

// Hk≠1(Uk,k≠1 fl Vk,k≠1) Hk≠1(Xk≠1
/X

k≠2).

The inverse maps to the isomorphisms above allow us to compose all the
arrows above, resulting in a map

ˆk : Hk(Xk
/X

k≠1) æ Hk≠1(Xk≠1
/X

k≠2). (17.3.0.3)

We remind the reader that when k = 1, X
k≠2 = X

≠1 = ÿ, and X
0
/ÿ ≥= X

0.
And we formally declare ˆ0 to be the zero map:

ˆ0 : H0(X0) æ 0.



17.4. EXERCISES 157

In the next class or two, we will show that the data

(Hk(Xk
/X

k≠1), ˆk)kØ0

forms a chain complex (which is a notion defined in your homework), and
that the homology of this chain complex computes the homology of X. For
today, we will conclude with some exercises.

17.4 Exercises
Exercise 17.4.1. Choose an example of a 1-dimensional CW complex X

1.
To make X

1 su�ciently interesting, make sure it has at least two 0-cells and
at least three 1-cells. For the example you choose:

(a) Draw each of X
1, U1, and V1, and U1 fl V1.

(b) Draw X
1
/X

0 and U1,0 and V1,0, and U1,0 fl V1,0.

(c) Verify Proposition 17.3.1 for your example.

Exercise 17.4.2. Choose an example of a 2-dimensional CW complex X
2.

For the example you choose:

(a) Draw each of X
2, U2, and V2, and U2 fl V2.

(b) For j = 0 and j = 1, draw X
2
/X

j and U2,j and V2,j, and U2,j fl V2,j.

(c) Verify Proposition 17.3.1 for your example.

Exercise 17.4.3. Choose a 1-dimensional CW complex X
1. Try to make

sense of ˆ1.


