Toward Cellular Homology
Questions?
(1) Is a bouquet of circles homotopy equivalent to a point? ie. Is $V_{1}^{k} S^{\prime} \simeq p t$?
Definition: Fix $k \geq 1, n \geq 0$
A bouquet of $k n$-spheres is (a space

$$
\text { homotopic to) }\left(\frac{11}{k} S^{n}\right) / \sim=: V_{k} S^{n}=S^{n} v S_{v}^{n} v S^{n}
$$

Also called where we choose one $x_{0} \in S^{n}$ and identify
a wedge or wedge sum
all x_{0} 's. (take the same point in every copy and glue them together)

(2) Theorem: Let X be a bouquet of $k n$-dimensional spheres i.e. $\quad X=V_{K} S^{n}$

Then for $n \geqq 1, H_{i}(X ; A) \cong\left\{\begin{array}{ll}0, & i \neq 0, n \\ \text { see this because path- } \\ \text { connected }\end{array} \begin{cases}A^{(\oplus k}, & i=n\end{cases} \right.$
For $n=0, H_{i}(X ; A) \cong\left\{\begin{array}{cl}A^{\oplus k+1}, & i=0 \\ 0, & \text { otherwise }\end{array}\binom{\right.$ Not }{ new }

Lay of the Land:

- Mayer-Vietoris
- Cellular homology
for Cw complexes

Like a cubist painting, you can study different facets of the shape

The reason we study C ω complexes:
(i) They are more amenable to study
(ii) C ω complexes admit another way to compute homologies: cellular homology (not just MayerVietoris, may be less work and more formulaic) via the cellular chain complex
(1) Theorem: Let x be an n-dimensional c ω-complex. Then $\forall i>n, H_{i}(X ; A) \cong 0$

Proof of (1):
Base case $(n=0)$: If x is 0 -dim, then $x \cong 川 p t$ Take axiom that infinite disjoint unions go to infinite disjoint sums if necessary; well assume finitely many cells in each dimension.
Remark: \exists functors (\mathbb{Z}-indexed)
H_{*} : Topological Spaces \longrightarrow Abelian Groups
such that $H_{*}(p t) \neq\left\{\begin{array}{l}A, \text { deg. } 0 \\ 0, \text { elsewhere }\end{array}\right.$
but satisfies other homology axioms we know So, H_{*} fails the dimension axiom.
These are different homology theories (kind of like changing the parallel postulate in Euclidean geometry).
So, $\quad H_{i}(x ; A) \cong\left\{\begin{array}{cl}\oplus A, & i=0 \\ 0, & \text { otherwise }\end{array}\right.$
A super convenient cover of $x=x^{n}$:
Since $x^{n}:=x^{n-1} \Perp\left(\frac{11}{A_{n}} D^{n}\right) / \sim_{\text {via } \Phi_{\alpha}}$
Note: (i) Ball (origin, 1) $\underset{\text { open }}{\subset} D^{n}$
So, let $U \subset X^{n}$ be $\underset{\alpha \in A_{n}}{\|}$ Ball(origin, 1$) \simeq \Perp p t$

Let $V=X^{n-1} \cup \frac{1}{\alpha \in A_{n}}\left\{x \in D^{n}:|x| \in(1-\varepsilon, 1]\right\} \simeq x^{n-1}$
Annulus that is closed on outside boundary and open on inside boundary

$$
\begin{aligned}
& \text { Then } \begin{aligned}
u \cap v & =\frac{11}{2 \in A_{n}}\{|x| \in(1-\varepsilon, 1)\} \\
& \cong \frac{11}{\alpha}\left(S^{n-1} \times(1-\varepsilon, 1)\right) \\
\text { homotopy } \rightarrow & \simeq \frac{11}{\alpha} S^{n-1}
\end{aligned}
\end{aligned}
$$

Assume true for every $(n-1)$ dimensional Cw complexes. Use M-V for U, V

