
Reading 16

RP
n as a CW complex

Today we will put a CW structure on RP
n.

Just to guide us, let me state some facts about the CW structure we will
put on RP

n. There will be exactly one k-cell for every k between 0 and n.
And for all m Æ n, RP

m will naturally be identified with the m-skeleton of
RP

n.

16.1 Some natural inclusions
There are natural injections

RP
m æ RP

n (16.1.0.1)

whenever m Æ n. Indeed, the usual injection

Rm+1 æ Rn+1
, (x0, . . . , xm) ‘æ (x0, . . . , xm, 0, . . . , 0)

sends lines in Rm+1 through the origin to lines in Rn+1 through the origin.

Remark 16.1.1. The map (16.1.0.1) is continuous. To see this, we note that
the inclusion S

m æ S
n is continuous. The composition S

m æ S
n æ RP

n

respects is thus continuous1 This composition further respects the equivalence
relation v ≥ ≠v on S

m. By the universal property of quotient spaces, we
conclude that the induced map from S

m
/(v ≥ ≠v) is continuous. But this

quotient space is precisely (homeomorphic to) RP
m.

1
The projection to RP

n
is continuous, and a composition of continuous maps is con-

tinuous.
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16.2 A map from the disk
Recall we have a quotient map p : S

n æ RP
n.

Let us identify D
n with the northern hemisphere of S

n. There is a com-
mon way to do this:

a : D
n æ S

n
, (x0, . . . , xn≠1) ‘æ

Q

ax0, . . . , xn≠1,

ı̂ıÙ1 ≠
nÿ

i=1
x

2
i

R

b .

Remark 16.2.1. The map a is continuous, as each of its components is a
continuous function.

Remark 16.2.2. Noting that Lv = L≠v, we conclude that the composition

D
n æ S

n æ RP
n

is a surjection.

Example 16.2.3. If n = 0, RP
0 is a point. The map a : D

0 æ S
0 picks out

the point 1 œ S
0 µ R, while the projection map S

0 æ RP
0 is the surjection

from a disjoint union of two points to RP
0. The composition

D
0 æ S

0 æ RP
0

is a homeomorphism.

Example 16.2.4. If n = 1, the map a : D
1 æ S

1 picks out the northern
hemisphere of S

1 – i.e., the part of S
1 that is on or above the horizontal axis

of R2. The composition
D

1 æ S
1 æ RP

1

is an injection when restricted to the portion of S
1 strictly above the hori-

zontal axis, but sends the two endpoints of D
1 to the same element of RP

1

– indeed, both endpoints of D
1 pick out the unique horizontal line passing

through the origin, otherwise known as the copy of RP
0 inside RP

1 under
the map (16.1.0.1). So indeed the composition ˆD

1 æ S
1 æ RP

1 lands
inside RP

0.

Example 16.2.5. If n = 2, the map ˆD
2 æ D

2 æ S
2 picks out the equator

of S
2; so the composite map to RP

2 has image consisting of those lines
contained in the x2 = 0 equatorial plane inside R3 = {(x0, x1, x2)}. So
indeed the composition ˆD

2 æ S
2 æ RP

2 lands inside RP
1. (As before,

RP
1 is treated as a subspace of RP

2 via the map (16.1.0.1).)
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16.3 The nth attaching map
The map a sends ˆD

n to the equator of S
n, and in particular, to the part

of S
n inside the image of the inclusion Rn æ Rn+1. We conclude that the

composition
ˆD

n æ S
n æ RP

n

factors through RP
n≠1 (which we identify as a subset of RP

n via the map (16.1.0.1))
We set

Ïn : ˆD
n æ RP

n≠1 (16.3.0.1)
to be the attaching map.

16.4 RP
n is a CW complex

Proposition 16.4.1. For all n, RP
n is a CW complex.

More precisely, the space obtained by attaching D
n to RP

n≠1 along (16.3.0.1)
is homeomorphic to RP

n.

Proof. Let us first prove the second claim. We have the composition

D
n æ S

n æ RP
n
.

The first map in this composition is continuous by Remark 16.2.1. The
second map is continuous because we endow RP

n with the quotient topology
with respect to the projection map (Definition 15.2.4). Thus the composed
map

D
n æ RP

n (16.4.0.1)
is continuous.

Thus, the function

h : RP
n≠1 ·

D
n æ RP

n

is continuous. Here, h acts on x œ RP
n≠1 by the usual inclusion (16.1.0.1) of

RP
n≠1 into RP

n, which is continuous by Remark 16.1.1. While if x œ D
n,

the function h acts by (16.4.0.1).
By construction, we know that h(x) = h(xÕ) for x œ RP

n≠1 and x
Õ œ D

n

if and only if Ïn(xÕ) = x. Thus, let ≥ be the equivalence relation generated
by this relation. We must show that the induced map

1
RP

n≠1 ·
D

n
2

/≥ æ RP
n (16.4.0.2)
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is a homeomorphism. It is continuous by definition of the quotient topology
on the domain. On the other hand, the domain is compact (because it is a
quotient of a compact space). And the codomain is Hausdor� by Proposi-
tion 15.2.5. So by a famous theorem – that a continuous bijection from a
compact space to a Hausdor� space is a homeomoprhism – it su�ces to show
that the induced map (16.4.0.2) is a bijection.

We know (16.4.0.1) is a surjection by Remark 16.2.2, so (16.4.0.2) is a
surjection. On the other hand, if the equivalence relation ≥ is precisely the
relation that identifies any two elements with the same image under h. So
(16.4.0.2) is an injection.

This completes the proof of the second claim.
For the first claim – that RP

n is a CW complex – we proceed by induction.
The case n = 0 is obvious, because RP

0 is just a point. Assuming the
statement for RP

n≠1, we see that (16.4.0.2) exhibits RP
n as obtained from

an (n≠1)-dimensional CW complex by attaching an n-dimensional disk along
an attaching map – namely, along (16.3.0.1). This completes the proof.

Remark 16.4.2. By Proposition 16.4.1, we conclude by induction that RP
n

can be written as an n-dimensional CW complex with a single cell in every
dimension up to (and including) n.

Example 16.4.3. When n = 0, there is no data. Ï0 is a function from the
empty set to the empty set, and RP

0 is given the CW structure consisting
only of a single 0-cell.

Example 16.4.4. For n = 1, assume we have already constructed RP
0.

Then the attaching map Ï1 : ˆD
1 æ RP

0 is the map sending both endpoints
of D

1 to the unique element of RP
0. The resulting CW complex

D
1 €

Ï1

RP
0

is a CW complex with one 1-cell and one 0-cell. As we know, such a CW
complex is homeomoprhic to S

1 (Example 14.2.8). So in fact RP
1 is home-

omorphic to S
1.

16.5 RP
n as a quotient of a disk

We saw in Proposition 15.2.3 and Remark 15.2.2 that we can topologize RP
n

as a quotient of S
n by the equivalence relation v ≥ v

Õ ≈∆ v = ±v
Õ.
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Figure 16.5.1. Two images depictings RP
2 as a quotient space. The im-

age on the left shows the standard unit disk, and the arrows are meant to
indicate that we glue two boundary arcs of the unit disk as indicated. So for
example, the matching antipodal points on the boundary circle of the disk
are identified.
On the right is another picture depicting RP

2 as a quotient space. Here,
we have chosen a homeomorphism of D

2 to a closed unit square, in such
a way that the points labeled as boxes are sent to each other. The edges
with two arrows heads are identified with each other (with the orientations
indicated) and the edges with four arrowheads are also identified with each
other. Note that while the two circle-labeled points are identified in this
process, no circle-labled point is identified with a square-labeled point.
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Figure 16.5.2. On the left, two continuous paths in RP
2 are drawn. The

dashed path is a closed curve, meaning the path begins and end in the same
place. In solid is drawn a continuous path, starting at one point (labeled as
a circle) and ending at another.
Likewise, on the right, two paths in RP

2, with the dashed path a closed path.
Note that these paths “pass through” a point on the boundary of the disk to
emerge at an equivalent (antipodal) point on the boundary of the disk.

We also know that the composition f : D
n æ S

n æ RP
n is a continuous

surjection. As a result, we know that f induces a homeomorphism from a
quotient of D

n (a compact space) to RP
n (a Hausdor� space). The quotient

of D
n is precisely by the relation identifying elements if they are in the same

fiber of f .
We know that two elements x, x

Õ of D
n are identified if and only if a(x) =

±a(xÕ). Because a maps D
n to a hemisphere of S

n, this only happens if
x, x

Õ œ ˆD
n. We conclude:

Proposition 16.5.3. Let ≥ denote the equivalence relation on D
n where

x ≥ x
Õ ≈∆ x = ±x

Õ and x, x
Õ œ ˆD

n
.

Then the composition D
n æ S

n æ RP
n induces a homeomorphism

D
n
/≥ æ RP

n
.

Remark 16.5.4. Note that ≥ does not relate any two distinct elements in
the interior of D

n. Thus, the above proposition tells us that RP
n has a dense

and open subset homeomorphic to the interior of D
n. Thus, D

n and RP
n

exhibit di�erent ways we can “compactify” Rn to a compact manifold. (So
does S

n, by one-point compactification.)
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Example 16.5.5. RP
2 is thus a space obtained from D

2 by identifying
antipodal points of ˆD

2. See Figure 16.5.1. Also drawn in Figure 16.5.2 are
continuous curves in RP

2, to give the reader a feel for how presenting RP
2

as a quotient of a disk can help us being to “play around” with RP
2.


