
Reading 15

Real projective space

Today we explore an example of a topological space that is sensible to imag-
ine, but requires great e�ort to capture rigorously: The space of lines through
the origin. This space is, for historical reasons, called real projective space.

Starting today, I’d like us to get used to the following terminology:

Definition 15.0.1. Let f : X æ Y and fix an element y œ Y . We call the
preimage f

≠1({y}) the fiber of f over y, or at y, or above y.

The term fiber is sometimes reserved for functions f where all the fibers
look equivalent in some way, but we will use it as a synonym for preimage of
any particular element.

15.1 The space of lines through the origin in
R2

There are many subsets of R2. Among them, the lines are among our fa-
vorites. Even among these, let us today decide to study lines that pass
through the origin.

Remark 15.1.1. Of course, a line may be vertical. In particular, a line in
the xy-plane need not be the graph of a linear function.

15.1.1 As a sets of sets
Here is one way to define the set of lines through the origin:
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132 READING 15. REAL PROJECTIVE SPACE

Notation 15.1.2 (RP
1). Let RP

1 µ P(R2) denote the collection of those
L µ R2 for which L is a line passing through the origin.

The notation RP
1 is pronounced “Arr Pee 1.”

So RP
1, in the above notation, is a set of sets: An element of RP

1 is a
line L through the origin.

It would be wonderful if there was a way we can think of RP
1 as a space.

After all, we know how to “wiggle” lines: Given a line L, we can tilt it a
little bit. So there is some sense in which some lines feel close to a given L,
and in which some lines feel farther from L.

The above definition of RP
1, unfortunately, makes such an attempt hard

to execute.

15.1.2 “Coordinatizing” RP
1

So let us try to think of RP
1 a little more cleverly.

What determines a line (through the origin)? Well, a non-zero element
of R2 determines a line, by the assignment

v ‘æ The line Lv spanned by v.

Written more algebraically, we have

Lv := {(x0, x1) œ R2 | (x0, x1) = tv for some t œ R \ {0}}.

Note that v œ Lv. Moreover, for any line L through the origin, and for any
v œ L, we have that L = Lv. So the function

p
Õ : R2 \ {0} æ RP

1
, v ‘æ Lv (15.1.2.1)

is a surjection. For reasons that will be clearer later, we will call this the
quotient map.

This is very good news! Before, RP
1 was a set with no obvious topology.

But now, we have written RP
1 as a set receiving a surjection from a space we

know and love. It is as though we have given coordinates to RP
1 – but our

coordinates are redundant, in the sense that two di�erent v can give rise to
the same Lv. That is completely fine – one should not be so hubristic as to
think that Euclidean space should have some canonical way to coordinatize
every interesting space.

Let’s understand (15.1.2.1) a bit more.
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Example 15.1.3. Fix the horizontal line through the origin. This is the set

L = {(x0, 0) œ R2 | x0 œ R}.

Thus Lv = L if and only if v is equal to some vector of the form (x0, 0) for
x0 ”= 0, x0 œ R. The vectors (1, 0), (≠1, 0), (fi, 0), (≠

Ô
2, 0) are thus all in

the pre-image of L under (15.1.2.1). That is, the preimage of L under the
quotient map (15.1.2.1) is exactly L \ {0}.

Exercise 15.1.4. Let L œ RP
1. Prove that the preimage of L under

(15.1.2.1) is L \ {0}.
In particular, prove that Lv and LvÕ are equal if and only if there exists

some non-zero real number – so that –v = v
Õ.

Example 15.1.5. Let U0 µ RP
1 denote the collection of lines L for which

(x0, x1) œ L \ {0} =∆ x0 ”= 0.

In other words, U0 is the collection of lines whose intersection with the x0-axis
is only the origin. (In other words, lines that are not horizontal.)

The preimage of U0 under (15.1.2.1) is thus the set of all vectors in R2\{0}
that do not intersect the x0-axis. Put another way, the preimage is the
complement in R2 of the x0-axis. This is an open subset both of R2, and
(more importantly to us) of R2 \ {0}.

Exercise 15.1.6. Let U1 µ RP
1 denote the collection of lines L for which

(x0, x1) œ L \ {0} =∆ x1 ”= 0.

Prove that the preimage of U1 under (15.1.2.1) is an open subset of R2 \ {0}.

Exercise 15.1.7. More generally, fix a non-zero vector v, and let A(v) µ
RP

1 denote the collection of those lines L in R2 for which the inner product
of v with a non-zero element of L is non-zero. Show that the preimage of
A(v) under (15.1.2.1) is an open subset of R2 \ {0}.

15.1.3 Topologizing RP
1

Moreover, the map (15.1.2.1) “feels” continuous. As we vary v continuously,
surely Lv varies in a continuous manner. So what we can do is endow RP

1
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with the coarsest1 topology for which (15.1.2.1) is continuous: The quotient
topology.

Definition 15.1.8 (The topology on RP
1). We topologize RP

1 so that the
function (15.1.2.1) realizes RP

1 as a quotient of R2 \ {0}.
Put another way, a subset of RP

1 is called open if and only if its preimage
in R2 \ {0} under (15.1.2.1) is open.

Example 15.1.9. Example 15.1.5 shows that U0 is an open subset of RP
2.

Exercise 15.1.6 shows that U1 is an open subset of RP
2.

Exercise 15.1.7 supplies many more open subsets of RP
2.

Exercise 15.1.10. Show that U0 fi U1 = RP
1.

Exercise 15.1.11. Let C be any subset of RP
1 and let C̃ be its preim-

age under the quotient map (15.1.2.1). Prove that if (x0, x1) œ C̃, then
(≠x0, ≠x1) œ C̃.

15.1.4 Topologizing RP
1 again

Of course, any non-zero vector v œ R2 \ {0} defines a line. We used this
observation to define the quotient map

p
Õ : R2 \ {0} æ RP

1
.

We have understood that the fiber above L is L \ {0}. This is a fairly large
set, even if it is natural.

So instead, what if we only consider v of unit length? Then we have a
natural function

p : S
1 æ RP

1
, v ‘æ Lv. (15.1.4.1)

Proposition 15.1.12. The quotient topology on RP
1 induced by (15.1.2.1)

is equal to the quotient topology on RP
1 induced by (15.1.4.1).

In other words, RP
1 as a space is unchanged if we think of it as a quotient

of R2 \ {0} or as the quotient of a circle.
1
The coarsest topology on a set X satisfying some property P is, informally, the topol-

ogy with the smallest collection of open sets for which a topology can satisfy P . Such a

smallest collection exists if the property P is closed under intersection of topologies.
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Proof. For brevity, let us denote by q the quotient map (15.1.2.1) and let q
Õ

denote the quotient map (15.1.4.1).
We let T be the topology induced by p, and TÕ be the topology induced

by p
Õ. Our aim is to show T = TÕ.

So let U œ TÕ. By definition, (pÕ)≠1(U) is an open subset of R2 \ {0},
hence arises as V fl R2 \ {0} for some open subset V of R2. On the other
hand, we know that

(pÕ)≠1(U) fl S
1 = p

≠1(U).
(Justification: Parsing the definitions, the lefthand side consists of those v

such that Lv œ U and v is of unit length. The righthand side likewise consists
of those elements v œ S

1 for which Lv œ U .)
Writing

(pÕ)≠1(U) fl S
1 = V fl R2 \ {0} fl S

1 = V fl S
1

(the last equality follows because S
1 µ R2 \{0}) we see that p

≠1(U) is indeed
open, by definition of subspace topology for S

1 µ R2. This shows TÕ µ T.
To show the reverse inclusion, suppose U

Õ = p
≠1(U) is open in S

1. Let
R>0U

Õ denote the set of all elements of the form tv where v œ U
Õ and t > 0

is a real number. I claim that (i) R>0U
Õ = (pÕ)≠1(U), and that (ii) R>0U

Õ is
an open subset of R2 \ {0}.

For (i), we know that Lv œ U if and only if Lv/|v| œ U (Exercise 15.1.4).
We thus see that (pÕ)≠1(U) indeed equals R>0U

Õ.
For (ii), we use polar coordinates. We know that U

Õ is open in S
1, so for

any v
Õ œ U

Õ, we know that there exists some small positive ‘ for which
Ball(vÕ

, ‘) fl S
n µ U

Õ
.

It follows that if y = tv
Õ is in R>0U

Õ, then the open sector R>0 Ball(vÕ
, ‘)

is in R>0U
Õ. This proves (pÕ)≠1(U) = R>0U

Õ is open in R2, and hence in
R2 \ {0}.
Remark 15.1.13. There is something powerful about (15.1.4.1). The topol-
ogy induced by (15.1.4.1) exhibits RP

1 as a quotient space of S
1.

But S
1 is compact, so it follows immediately that RP

1 is also compact.
Proposition 15.1.14. RP

1 is compact.
Warning 15.1.15. One can prove that RP

1 is homeomorphic to the circle
– we will do so next class. But the quotient map (15.1.4.1), which is not an
injection, is not a homeomorphism.
Exercise 15.1.16. For any L œ RP

1, compute the fiber of (15.1.4.1) at L.
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15.2 Real projective space of all dimensions
Definition 15.2.1. We let RP

n denote the collection of lines in Rn+1 passing
through the origin.

We have the analogues of (15.1.2.1) and (15.1.4.1),

p
Õ : Rn+1 \ {0} æ RP

n
, v ‘æ Lv

and
p : S

n æ RP
n
, v ‘æ Lv,

both sending a vector v to the line spanned by that vector.
Remark 15.2.2. We can identify the fibers of p

Õ and of p fairly easily.
Moreover, because p

Õ (and p) is a surjection, there is a natural bijection
between RP

n and a quotient set (Rn+1 \ {0})/≥ (and a quotient set S
n
/≥)

where ≥ identifies two elements of the domain if and only if they lie in the
same fiber.

For example, we know that Lv = LvÕ if and only if v is a non-zero scalar
multiple of v

Õ. So the equivalent relation induced by p
Õ is the relation v ≥

v
Õ ≈∆ there exists – ”= 0 for which –v = v

Õ.
Likewise, the equivalence relation induced by p is the relation v ≥ v

Õ ≈∆
v = ±v

Õ.
We have the following analogue of Proposition 15.1.12.

Proposition 15.2.3. The quotient topology induced by p and the quotient
topology induced by p

Õ are equal.
Henceforth, we treat RP

n as the topological space endowed with the
quotient topology induced by the above maps.

Because S
n is compact, we conclude that RP

n (with the above topology)
is compact.

The upshot is that the collection of lines in Rn+1 passing through the
origin is, naturally, a topological space. It is compact. And in the following
classes, we’ll study its topology a bit more, with the goal of computing its
homology groups.
Definition 15.2.4. We call RP

n, with the topology above, real projective
space of dimension n.

RP
1 is often called the real projective line.

RP
2 is called the real projective plane.
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The following is a useful fact:

Proposition 15.2.5. RP
n is compact and Hausdor�.

Proof. RP
n is a quotient of a compact space – S

n – so is compact.
Let L, L

Õ be two distinct elements of RP
n. Choose two unit vectors v

and v
Õ that are elements of L and L

Õ, respectively. Because v ”= v
Õ, there

exist open balls Ball(v, ‘0) and Ball(vÕ
, ‘0) of some small radius ‘0 centered

at v and v
Õ, respectively, so that Ball(v, ‘0) fl Ball(vÕ

, ‘0) = ÿ. Note also that
because Lv ”= LvÕ , we know that ≠v ”= v

Õ. So by choosing ‘1 small enough,
we can guarantee that Ball(≠v, ‘1) fl Ball(vÕ

, ‘1) is also empty. Taking ‘ to
be any positive real number smaller than ‘0 and ‘1, we see that

1
Ball(v, ‘)

€
Ball(≠v, ‘)

2
fl

1
Ball(vÕ

, ‘)
€

Ball(≠v
Õ
, ‘)

2
= ÿ.

Now define
Ũv =

1
Ball(v, ‘)

€
Ball(≠v, ‘)

2
fl S

n

and
ŨvÕ =

1
Ball(vÕ

, ‘)
€

Ball(≠v
Õ
, ‘)

2
fl S

n
.

Setting UL = p(Ũv) and ULÕ = p(ŨvÕ), we see that UL and ULÕ are open
because their preimages are precisely Ũv and ŨvÕ , respectively. Moreover,
UL fl ULÕ = ÿ because their preimages are disjoint.

15.3 Exercises
Exercise 15.3.1. Prove Proposition 15.2.3.

Exercise 15.3.2. Consider the projection map S
n æ RP

n. Show that this
map is a local homeomorphism. That is, prove that for every x œ S

n, there
exists some open subset Ux of S

n containing x such that the composition
Ux æ S

n æ RP
n is a homeomorphism onto an open subset of RP

n.

Exercise 15.3.3. Prove that RP
n is locally Euclidean. This means that for

every x œ RP
n, there exists some open subset Ux of RP

n containing x such
that Ux is homeomorphic to some Euclidean space (e.g., Rn).

Exercise 15.3.4 (For those of you who know about group actions). Show
that the function v ‘æ ≠v defines a group action by Z/2Z on the set S

n.
Show that the quotient of S

n by this group action is naturally in bijection
with RP

n.
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Exercise 15.3.5. Make sure you understand why writing RP
n as a quotient

of S
n exhibits RP

n as a compact space.

Exercise 15.3.6. Let Yn+1 be the collection of all lines in Rn+1 (whether
they pass through the origin or not). Write down some natural topologies
on Yn+1.


