## Reading 15

## Real projective space

Today we explore an example of a topological space that is sensible to imagine, but requires great effort to capture rigorously: The space of lines through the origin. This space is, for historical reasons, called real projective space.

Starting today, I'd like us to get used to the following terminology:
Definition 15.0.1. Let $f: X \rightarrow Y$ and fix an element $y \in Y$. We call the preimage $f^{-1}(\{y\})$ the fiber of $f$ over $y$, or at $y$, or above $y$.

The term fiber is sometimes reserved for functions $f$ where all the fibers look equivalent in some way, but we will use it as a synonym for preimage of any particular element.

### 15.1 The space of lines through the origin in $\mathbb{R}^{2}$

There are many subsets of $\mathbb{R}^{2}$. Among them, the lines are among our favorites. Even among these, let us today decide to study lines that pass through the origin.

Remark 15.1.1. Of course, a line may be vertical. In particular, a line in the xy-plane need not be the graph of a linear function.

### 15.1.1 As a sets of sets

Here is one way to define the set of lines through the origin:

Notation 15.1.2 $\left(\mathbb{R} P^{1}\right)$. Let $\mathbb{R} P^{1} \subset \mathcal{P}\left(\mathbb{R}^{2}\right)$ denote the collection of those $L \subset \mathbb{R}^{2}$ for which $L$ is a line passing through the origin.

The notation $\mathbb{R} P^{1}$ is pronounced "Arr Pee 1."
So $\mathbb{R} P^{1}$, in the above notation, is a set of sets: An element of $\mathbb{R} P^{1}$ is a line $L$ through the origin.

It would be wonderful if there was a way we can think of $\mathbb{R} P^{1}$ as a space. After all, we know how to "wiggle" lines: Given a line $L$, we can tilt it a little bit. So there is some sense in which some lines feel close to a given L, and in which some lines feel farther from $L$.

The above definition of $\mathbb{R} P^{1}$, unfortunately, makes such an attempt hard to execute.

### 15.1.2 "Coordinatizing" $\mathbb{R} P^{1}$

So let us try to think of $\mathbb{R} P^{1}$ a little more cleverly.
What determines a line (through the origin)? Well, a non-zero element of $\mathbb{R}^{2}$ determines a line, by the assignment

$$
v \mapsto \text { The line } L_{v} \text { spanned by } v .
$$

Written more algebraically, we have

$$
L_{v}:=\left\{\left(x_{0}, x_{1}\right) \in \mathbb{R}^{2} \mid\left(x_{0}, x_{1}\right)=t v \text { for some } t \in \mathbb{R} \backslash\{0\}\right\}
$$

Note that $v \in L_{v}$. Moreover, for any line $L$ through the origin, and for any $v \in L$, we have that $L=L_{v}$. So the function

$$
\begin{equation*}
p^{\prime}: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R} P^{1}, \quad v \mapsto L_{v} \tag{15.1.2.1}
\end{equation*}
$$

is a surjection. For reasons that will be clearer later, we will call this the quotient map.

This is very good news! Before, $\mathbb{R} P^{1}$ was a set with no obvious topology. But now, we have written $\mathbb{R} P^{1}$ as a set receiving a surjection from a space we know and love. It is as though we have given coordinates to $\mathbb{R} P^{1}$ - but our coordinates are redundant, in the sense that two different $v$ can give rise to the same $L_{v}$. That is completely fine - one should not be so hubristic as to think that Euclidean space should have some canonical way to coordinatize every interesting space.

Let's understand (15.1.2.1) a bit more.

Example 15.1.3. Fix the horizontal line through the origin. This is the set

$$
L=\left\{\left(x_{0}, 0\right) \in \mathbb{R}^{2} \mid x_{0} \in \mathbb{R}\right\} .
$$

Thus $L_{v}=L$ if and only if $v$ is equal to some vector of the form $\left(x_{0}, 0\right)$ for $x_{0} \neq 0, x_{0} \in \mathbb{R}$. The vectors $(1,0),(-1,0),(\pi, 0),(-\sqrt{2}, 0)$ are thus all in the pre-image of $L$ under (15.1.2.1). That is, the preimage of $L$ under the quotient map (15.1.2.1) is exactly $L \backslash\{0\}$.

Exercise 15.1.4. Let $L \in \mathbb{R} P^{1}$. Prove that the preimage of $L$ under (15.1.2.1) is $L \backslash\{0\}$.

In particular, prove that $L_{v}$ and $L_{v^{\prime}}$ are equal if and only if there exists some non-zero real number $\alpha$ so that $\alpha v=v^{\prime}$.

Example 15.1.5. Let $U_{0} \subset \mathbb{R} P^{1}$ denote the collection of lines $L$ for which

$$
\left(x_{0}, x_{1}\right) \in L \backslash\{0\} \Longrightarrow x_{0} \neq 0
$$

In other words, $U_{0}$ is the collection of lines whose intersection with the $x_{0}$-axis is only the origin. (In other words, lines that are not horizontal.)

The preimage of $U_{0}$ under (15.1.2.1) is thus the set of all vectors in $\mathbb{R}^{2} \backslash\{0\}$ that do not intersect the $x_{0}$-axis. Put another way, the preimage is the complement in $\mathbb{R}^{2}$ of the $x_{0}$-axis. This is an open subset both of $\mathbb{R}^{2}$, and (more importantly to us) of $\mathbb{R}^{2} \backslash\{0\}$.

Exercise 15.1.6. Let $U_{1} \subset \mathbb{R} P^{1}$ denote the collection of lines $L$ for which

$$
\left(x_{0}, x_{1}\right) \in L \backslash\{0\} \Longrightarrow x_{1} \neq 0
$$

Prove that the preimage of $U_{1}$ under (15.1.2.1) is an open subset of $\mathbb{R}^{2} \backslash\{0\}$.
Exercise 15.1.7. More generally, fix a non-zero vector $v$, and let $A(v) \subset$ $\mathbb{R} P^{1}$ denote the collection of those lines $L$ in $\mathbb{R}^{2}$ for which the inner product of $v$ with a non-zero element of $L$ is non-zero. Show that the preimage of $A(v)$ under (15.1.2.1) is an open subset of $\mathbb{R}^{2} \backslash\{0\}$.

### 15.1.3 Topologizing $\mathbb{R} P^{1}$

Moreover, the map (15.1.2.1) "feels" continuous. As we vary $v$ continuously, surely $L_{v}$ varies in a continuous manner. So what we can do is endow $\mathbb{R} P^{1}$
with the coarsest ${ }^{1}$ topology for which (15.1.2.1) is continuous: The quotient topology.

Definition 15.1.8 (The topology on $\mathbb{R} P^{1}$ ). We topologize $\mathbb{R} P^{1}$ so that the function (15.1.2.1) realizes $\mathbb{R} P^{1}$ as a quotient of $\mathbb{R}^{2} \backslash\{0\}$.

Put another way, a subset of $\mathbb{R} P^{1}$ is called open if and only if its preimage in $\mathbb{R}^{2} \backslash\{0\}$ under (15.1.2.1) is open.

Example 15.1.9. Example 15.1.5 shows that $U_{0}$ is an open subset of $\mathbb{R} P^{2}$. Exercise 15.1 .6 shows that $U_{1}$ is an open subset of $\mathbb{R} P^{2}$.

Exercise 15.1 .7 supplies many more open subsets of $\mathbb{R} P^{2}$.
Exercise 15.1.10. Show that $U_{0} \cup U_{1}=\mathbb{R} P^{1}$.
Exercise 15.1.11. Let $C$ be any subset of $\mathbb{R} P^{1}$ and let $\tilde{C}$ be its preimage under the quotient map (15.1.2.1). Prove that if $\left(x_{0}, x_{1}\right) \in \tilde{C}$, then $\left(-x_{0},-x_{1}\right) \in \tilde{C}$.

### 15.1.4 Topologizing $\mathbb{R} P^{1}$ again

Of course, any non-zero vector $v \in \mathbb{R}^{2} \backslash\{0\}$ defines a line. We used this observation to define the quotient map

$$
p^{\prime}: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R} P^{1}
$$

We have understood that the fiber above $L$ is $L \backslash\{0\}$. This is a fairly large set, even if it is natural.

So instead, what if we only consider $v$ of unit length? Then we have a natural function

$$
\begin{equation*}
p: S^{1} \rightarrow \mathbb{R} P^{1}, \quad v \mapsto L_{v} \tag{15.1.4.1}
\end{equation*}
$$

Proposition 15.1.12. The quotient topology on $\mathbb{R} P^{1}$ induced by (15.1.2.1) is equal to the quotient topology on $\mathbb{R} P^{1}$ induced by (15.1.4.1).

In other words, $\mathbb{R} P^{1}$ as a space is unchanged if we think of it as a quotient of $\mathbb{R}^{2} \backslash\{0\}$ or as the quotient of a circle.

[^0]Proof. For brevity, let us denote by $q$ the quotient map (15.1.2.1) and let $q^{\prime}$ denote the quotient map (15.1.4.1).

We let $\mathcal{T}$ be the topology induced by $p$, and $\mathfrak{T}^{\prime}$ be the topology induced by $p^{\prime}$. Our aim is to show $\mathcal{T}=\mathcal{T}^{\prime}$.

So let $U \in \mathcal{T}^{\prime}$. By definition, $\left(p^{\prime}\right)^{-1}(U)$ is an open subset of $\mathbb{R}^{2} \backslash\{0\}$, hence arises as $V \cap \mathbb{R}^{2} \backslash\{0\}$ for some open subset $V$ of $\mathbb{R}^{2}$. On the other hand, we know that

$$
\left(p^{\prime}\right)^{-1}(U) \cap S^{1}=p^{-1}(U)
$$

(Justification: Parsing the definitions, the lefthand side consists of those $v$ such that $L_{v} \in U$ and $v$ is of unit length. The righthand side likewise consists of those elements $v \in S^{1}$ for which $L_{v} \in U$.)

Writing

$$
\left(p^{\prime}\right)^{-1}(U) \cap S^{1}=V \cap \mathbb{R}^{2} \backslash\{0\} \cap S^{1}=V \cap S^{1}
$$

(the last equality follows because $S^{1} \subset \mathbb{R}^{2} \backslash\{0\}$ ) we see that $p^{-1}(U)$ is indeed open, by definition of subspace topology for $S^{1} \subset \mathbb{R}^{2}$. This shows $\mathcal{T}^{\prime} \subset \mathcal{T}$.

To show the reverse inclusion, suppose $U^{\prime}=p^{-1}(U)$ is open in $S^{1}$. Let $\mathbb{R}_{>0} U^{\prime}$ denote the set of all elements of the form $t v$ where $v \in U^{\prime}$ and $t>0$ is a real number. I claim that (i) $\mathbb{R}_{>0} U^{\prime}=\left(p^{\prime}\right)^{-1}(U)$, and that (ii) $\mathbb{R}_{>0} U^{\prime}$ is an open subset of $\mathbb{R}^{2} \backslash\{0\}$.

For (i), we know that $L_{v} \in U$ if and only if $L_{v /|v|} \in U$ (Exercise 15.1.4). We thus see that $\left(p^{\prime}\right)^{-1}(U)$ indeed equals $\mathbb{R}_{>0} U^{\prime}$.

For (ii), we use polar coordinates. We know that $U^{\prime}$ is open in $S^{1}$, so for any $v^{\prime} \in U^{\prime}$, we know that there exists some small positive $\epsilon$ for which

$$
\operatorname{Ball}\left(v^{\prime}, \epsilon\right) \cap S^{n} \subset U^{\prime}
$$

It follows that if $y=t v^{\prime}$ is in $\mathbb{R}_{>0} U^{\prime}$, then the open $\operatorname{sector} \mathbb{R}_{>0} \operatorname{Ball}\left(v^{\prime}, \epsilon\right)$ is in $\mathbb{R}_{>0} U^{\prime}$. This proves $\left(p^{\prime}\right)^{-1}(U)=\mathbb{R}_{>0} U^{\prime}$ is open in $\mathbb{R}^{2}$, and hence in $\mathbb{R}^{2} \backslash\{0\}$.
Remark 15.1.13. There is something powerful about (15.1.4.1). The topology induced by (15.1.4.1) exhibits $\mathbb{R} P^{1}$ as a quotient space of $S^{1}$.

But $S^{1}$ is compact, so it follows immediately that $\mathbb{R} P^{1}$ is also compact.
Proposition 15.1.14. $\mathbb{R} P^{1}$ is compact.
Warning 15.1.15. One can prove that $\mathbb{R} P^{1}$ is homeomorphic to the circle - we will do so next class. But the quotient map (15.1.4.1), which is not an injection, is not a homeomorphism.
Exercise 15.1.16. For any $L \in \mathbb{R} P^{1}$, compute the fiber of (15.1.4.1) at $L$.

### 15.2 Real projective space of all dimensions

Definition 15.2.1. We let $\mathbb{R} P^{n}$ denote the collection of lines in $\mathbb{R}^{n+1}$ passing through the origin.

We have the analogues of (15.1.2.1) and (15.1.4.1),

$$
p^{\prime}: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow \mathbb{R} P^{n}, \quad v \mapsto L_{v}
$$

and

$$
p: S^{n} \rightarrow \mathbb{R} P^{n}, \quad v \mapsto L_{v},
$$

both sending a vector $v$ to the line spanned by that vector.
Remark 15.2.2. We can identify the fibers of $p^{\prime}$ and of $p$ fairly easily.
Moreover, because $p^{\prime}$ (and $p$ ) is a surjection, there is a natural bijection between $\mathbb{R} P^{n}$ and a quotient set $\left(\mathbb{R}^{n+1} \backslash\{0\}\right) / \sim\left(\right.$ and a quotient set $\left.S^{n} / \sim\right)$ where $\sim$ identifies two elements of the domain if and only if they lie in the same fiber.

For example, we know that $L_{v}=L_{v^{\prime}}$ if and only if $v$ is a non-zero scalar multiple of $v^{\prime}$. So the equivalent relation induced by $p^{\prime}$ is the relation $v \sim$ $v^{\prime} \Longleftrightarrow$ there exists $\alpha \neq 0$ for which $\alpha v=v^{\prime}$.

Likewise, the equivalence relation induced by $p$ is the relation $v \sim v^{\prime} \Longleftrightarrow$ $v= \pm v^{\prime}$.

We have the following analogue of Proposition 15.1.12.
Proposition 15.2.3. The quotient topology induced by $p$ and the quotient topology induced by $p^{\prime}$ are equal.

Henceforth, we treat $\mathbb{R} P^{n}$ as the topological space endowed with the quotient topology induced by the above maps.

Because $S^{n}$ is compact, we conclude that $\mathbb{R} P^{n}$ (with the above topology) is compact.

The upshot is that the collection of lines in $\mathbb{R}^{n+1}$ passing through the origin is, naturally, a topological space. It is compact. And in the following classes, we'll study its topology a bit more, with the goal of computing its homology groups.
Definition 15.2.4. We call $\mathbb{R} P^{n}$, with the topology above, real projective space of dimension $n$.
$\mathbb{R} P^{1}$ is often called the real projective line.
$\mathbb{R} P^{2}$ is called the real projective plane.

The following is a useful fact:
Proposition 15.2.5. $\mathbb{R} P^{n}$ is compact and Hausdorff.
Proof. $\mathbb{R} P^{n}$ is a quotient of a compact space $-S^{n}$ - so is compact.
Let $L, L^{\prime}$ be two distinct elements of $\mathbb{R} P^{n}$. Choose two unit vectors $v$ and $v^{\prime}$ that are elements of $L$ and $L^{\prime}$, respectively. Because $v \neq v^{\prime}$, there exist open balls $\operatorname{Ball}\left(v, \epsilon_{0}\right)$ and $\operatorname{Ball}\left(v^{\prime}, \epsilon_{0}\right)$ of some small radius $\epsilon_{0}$ centered at $v$ and $v^{\prime}$, respectively, so that $\operatorname{Ball}\left(v, \epsilon_{0}\right) \cap \operatorname{Ball}\left(v^{\prime}, \epsilon_{0}\right)=\emptyset$. Note also that because $L_{v} \neq L_{v^{\prime}}$, we know that $-v \neq v^{\prime}$. So by choosing $\epsilon_{1}$ small enough, we can guarantee that $\operatorname{Ball}\left(-v, \epsilon_{1}\right) \cap \operatorname{Ball}\left(v^{\prime}, \epsilon_{1}\right)$ is also empty. Taking $\epsilon$ to be any positive real number smaller than $\epsilon_{0}$ and $\epsilon_{1}$, we see that

$$
(\operatorname{Ball}(v, \epsilon) \bigcup \operatorname{Ball}(-v, \epsilon)) \cap\left(\operatorname{Ball}\left(v^{\prime}, \epsilon\right) \bigcup \operatorname{Ball}\left(-v^{\prime}, \epsilon\right)\right)=\emptyset
$$

Now define

$$
\tilde{U}_{v}=(\operatorname{Ball}(v, \epsilon) \bigcup \operatorname{Ball}(-v, \epsilon)) \cap S^{n}
$$

and

$$
\tilde{U}_{v^{\prime}}=\left(\operatorname{Ball}\left(v^{\prime}, \epsilon\right) \bigcup \operatorname{Ball}\left(-v^{\prime}, \epsilon\right)\right) \cap S^{n} .
$$

Setting $U_{L}=p\left(\tilde{U}_{v}\right)$ and $U_{L^{\prime}}=p\left(\tilde{U}_{v^{\prime}}\right)$, we see that $U_{L}$ and $U_{L^{\prime}}$ are open because their preimages are precisely $\tilde{U}_{v}$ and $\tilde{U}_{v^{\prime}}$, respectively. Moreover, $U_{L} \cap U_{L^{\prime}}=\emptyset$ because their preimages are disjoint.

### 15.3 Exercises

Exercise 15.3.1. Prove Proposition 15.2.3.
Exercise 15.3.2. Consider the projection map $S^{n} \rightarrow \mathbb{R} P^{n}$. Show that this map is a local homeomorphism. That is, prove that for every $x \in S^{n}$, there exists some open subset $U_{x}$ of $S^{n}$ containing $x$ such that the composition $U_{x} \rightarrow S^{n} \rightarrow \mathbb{R} P^{n}$ is a homeomorphism onto an open subset of $\mathbb{R} P^{n}$.

Exercise 15.3.3. Prove that $\mathbb{R} P^{n}$ is locally Euclidean. This means that for every $x \in \mathbb{R} P^{n}$, there exists some open subset $U_{x}$ of $\mathbb{R} P^{n}$ containing $x$ such that $U_{x}$ is homeomorphic to some Euclidean space (e.g., $\mathbb{R}^{n}$ ).

Exercise 15.3.4 (For those of you who know about group actions). Show that the function $v \mapsto-v$ defines a group action by $\mathbb{Z} / 2 \mathbb{Z}$ on the set $S^{n}$. Show that the quotient of $S^{n}$ by this group action is naturally in bijection with $\mathbb{R} P^{n}$.

Exercise 15.3.5. Make sure you understand why writing $\mathbb{R} P^{n}$ as a quotient of $S^{n}$ exhibits $\mathbb{R} P^{n}$ as a compact space.

Exercise 15.3.6. Let $Y_{n+1}$ be the collection of all lines in $\mathbb{R}^{n+1}$ (whether they pass through the origin or not). Write down some natural topologies on $Y_{n+1}$.


[^0]:    ${ }^{1}$ The coarsest topology on a set $X$ satisfying some property $P$ is, informally, the topology with the smallest collection of open sets for which a topology can satisfy $P$. Such a smallest collection exists if the property $P$ is closed under intersection of topologies.

