
Reading 14

CW complexes

CW complexes are, roughly speaking, spaces built out of disks, inductively
by dimension. So to communicate a CW complex to somebody, we must tell
them the way in which we build the CW complex using disks.

Given a topological space X, it is a yes/no question whether X can be
built in this fashion. So we sometimes say X is a CW complex if X admits
such a presentation.

We also sometimes say X is a CW complex when we have a particular
presentation in mind.

14.1 Disks and spheres
Notation 14.1.1. Recall that the n-dimensional disk D

n is the set of all
points in Rn having distance Æ 1 from the origin:

D
n := {(x1, . . . , xn) |

nÿ

i=1
x

2
i

Æ 1.}

The boundary of D
n is the sphere of dimension n ≠ 1:

S
n≠1 := {(x1, . . . , xn) |

nÿ

i=1
x

2
i

= 1.}

To emphasize that the sphere is the boundary of D
n, we will also introduce

the notation
ˆD

n := S
n≠1

.

ˆD
n is equal to S

n≠1.
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124 READING 14. CW COMPLEXES

Remark 14.1.2. ˆ is a common notation that means “boundary.” The
symbol sometimes also means “partial” (in the context of partial derivatives)
but we do not mean “partial” here.

14.2 Making spaces from cells
In this course, most of our spaces have been embedded somewhere. (For
example, S

n is embedded in Rn+1.) So the subspace topology has been a
central player.

But, as we will see, many important spaces are presented or built without
reference to any embedding.

Remark 14.2.1. It was likely an intellectual leap, in the development of
mathematics, to think of spaces that do not come with a preferred embedding
(i.e., that are not defined as subsets of a space we already know). It is a
powerful leap.

We are but humans, so we would also like to be able to understand such
spaces “piece by piece.” A CW structure on a space is a way to think of the
space piece by piece – cell by cell.

So here is a way to build a space using “cells.”

14.2.0 Spaces made of 0-dimensional cells.

Fix a set A0. We let X
0 be a disjoint collection of points, with a point for

every – œ A0. Thinking of a point as D
0, we can (and do) write

X
0 :=

·

–œA

D
0
.

We call A0 the set of zero-dimensional cells, or (for short) the set of zero-cells
of X

0. Each D
0 is called a zero-dimensional cell, or zero-cell, of X

0.
We say that X

0 is a zero-dimensional CW complex, or a CW complex of
dimension zero.

Notation 14.2.2. Sometimes, we will write D
0
–

(where – œ A0) to indicate
which 0-cell (i.e., which point) we are referring to in X

0.
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Example 14.2.3. If A0 is empty, X
0 is the empty space.

If A0 consists of a single element, X
0 is homeomorphic to pt.

If A0 has two points, X
0 is homeomorphic to pt

‡
pt.

A0 may be infinite, in which case X
0 is homeomorphic to a discrete space

in bijection with A0.

Remark 14.2.4. Note that X
0 is always discrete. (That is, X

0 always has
the discrete topology.) So a 0-dimensional CW complex is always Hausdor�.

14.2.1 1-dimensional CW complexes
Suppose we are given a space X

0 as in the previous section.
Fix a set A1. For every – œ A1, fix the data of a continuous map Ï– from

ˆD
1 æ X

0. This data is enough to construct a space X
1, obtained from

X
0 ·

Q

a
·

–œA1

D
1

R

b

by identifying the boundary points of D
1
–

with points of X
0 using the map

Ï–. Concretely, we define

X
1 :=

Q

aX
0 ·

(
·

–œA1

D
1)

R

b /≥ (14.2.1.1)

where ≥ is the equivalence relation generated by

’– œ A1, y œ ˆD
1
–

≥ Ï–(y).

Remark 14.2.5. Already in the notation, you can see that I write D
1
–

to
think of the copy of D

1 corresponding to the element – œ A1.

Definition 14.2.6. We call each D
1
–

a one-cell of X
1. We call each Ï– an

attaching map.

Remark 14.2.7. Each attaching map Ï– tells us how to glue the endpoints
of D

1
–

to X
0.

If you like, X
0 is a collection of marshmallows. A1 indexes a collection of

toothpicks. And each Ï– tells us how to glue the ends of the “–th” toothpick
in to my marshmallows.
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Example 14.2.8. Suppose A0 and A1 are both empty. Then X
1 is the

empty set.
Suppose A1 is empty. Then X

1 is homeomorphic to a disjoint union of
points, with one point for every element of A0.

Suppose A0 has exactly one element. Then for every – œ A1, the map
Ï– : D

1
–

æ X
0 is uniquely determined, because X

0 is a space with only one
element. Then X

1 is homeomorphic to a bouquet of circles, with one circle
for every – œ A1.

In particular, if both A0 and A1 are sets with exactly one element, then
X

1 is homeomorphic to S
1.

Suppose A0 has exactly two elements, and A1 has exactly one element.
Then, up to homeomorphism, there are exactly two possibilities for X

1. X
1

is a space homeomorphic to D
0 ‡

S
1, or to D

1. The homeomorphism type of
X

1 depends on the choice of Ï–.

Definition 14.2.9. A space X
1 constructed as in (14.2.1.1) is called a one-

dimensional CW complex.

The following is, for some people, their preferred definition of “graph” in
the sense of graph theory:

Definition 14.2.10 (For some people.). A graph is a one-dimensional CW
complex.

Remark 14.2.11. Note that X
1 is determined completely by the data of

two sets A0,A1 and two functions A1 æ A0 (one function tells where to glue
the points ≠1 œ ˆD

1
–
, while the other function tells us where to glue the

points 1 œ ˆD
1
–
). Thus, some people also define a graph to be the data of

two sets, together with two functions from one set to the other.

14.2.2 2-dimensional CW complexes
Now we will consider spaces made of cells of at most dimension 2.

Suppose we are given a 1-dimensional CW complex X
1.

Fix a set A2. For every – œ A2, fix the data of a continuous map Ï– from
ˆD

2 æ X
1. This data is enough to construct a space X

2, obtained from

X
1 ·

Q

a
·

–œA2

D
2

R

b
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by identifying the boundary points of D
2
–

with the points of X
1 using the

map Ï–. Concretely, we define

X
2 :=

Q

aX
1 ·

(
·

–œA1

D
2)

R

b /≥

where ≥ is the equivalence relation generated by

’– œ A2, y œ ˆD
2
–

≥ Ï–(y).

We call each D
2
–

a two-cell of X
2. As before, we call each Ï– an attaching

map. It tells us where to glue the boundary points of D
2
–
.

Example 14.2.12. Suppose A2 is empty. Then X
2 is homeomorphic to X

1.
Suppose A0 consists of a single point, and that A1 is empty. Then X

2 is
homemorphic to a bouquet of spheres (i.e., a collection of copies of S

2, all
glued along one point). There are as many spheres in this bouquet as there
are elements of A2. In particular, if A1 is empty and A2 consists of a single
point, then X

2 is homeomorphic to S
2.

In general, two-dimensional CW complexes can be rather interesting. Any
surface can be realized as a 2-dimensional CW complex. Any polyhedron is
a 2-dimensional CW complex.

14.2.3 n-dimensional CW complexes
By now you have anticipated the inductive definition.

Suppose one has an (n ≠ 1)-dimensional CW complex X
n≠1. Fix a set

An, and for every – œ An, choose a continuous map Ï– : ˆD
n æ X

n≠1. We
can define X

n to be the space

X
n :=

Q

aX
n≠1 ·

(
·

–œAn

D
n)

R

b /≥ (14.2.3.1)

where ≥ is the equivalence relation generated by

’– œ An, y œ ˆD
n

–
≥ Ï–(y).

Any space built in this way is called an n-dimensional CW complex. Each
D

n

–
is called an n-cell of X

n. Each Ï– is called an attaching map.
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14.2.4 CW complexes
First, any space constructed in the above way is called a CW complex.

However, CW complexes do not need to be finite-dimensional.
Suppose that for every n œ ZØ0, one has an n-dimensional CW complex

X
n, and that for all n Ø 1, X

n is obtained by attaching n-cells to X
n≠1.

Then one can define a space

X :=
€

nØ0
X

n

topologized so that a subset U µ X is open if and only if U fl X
n is open for

every n Ø 0. (This is called the CW topology, or colimit topology, or direct
limit topology, of X.)

Note that if the set of n-cells An is non-empty for infinitely many n, then
X is not a finite-dimensional CW complex. We simply call X a CW complex.

For each – œ An, we call D
n

–
an n-dimensional cell, or n-cell, of X. Each

Ï– is called an attaching map.

14.3 Some basic facts and terminology

14.3.1 Understanding the gluing process
Remark 14.3.1. “The smallest equivalence relation generated by...” is
rather abstract, so let’s have a concrete description of the relation ≥ we
quotient by in (14.2.3.1).

Consider the following equivalence relation on X
n≠1 ‡(‡

–œAn
D

n): We
declare xRx

Õ if and only if

(i) x = x
Õ, or

(ii) x œ X
n≠1

, x
Õ œ ˆD

n

–Õ for some1
–

Õ, and Ï–Õ(xÕ) = x, or

(iii) x
Õ œ X

n≠1
, x œ ˆD

n

–
for some2

–, and Ï–(x) = x
Õ, or

(iv) x œ ˆD
n

–
, x

Õ œ ˆD
n

–Õ and Ï–(x) = Ï–Õ(xÕ).3

1
–

Õ
is unique given x

Õ
2
– is unique given x

3
Note – could equal –

Õ
here, but – is unique given x, and –

Õ
is unique given –

Õ
.
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It is easily checked that R µ X ◊ X is indeed an equivalence relation. It
clearly contains ≥ in light of (ii). On the other hand, if R

Õ is an equivalence
relation containing ≥, it is straightforward to check that R µ R

Õ. This shows
R is the smallest equivalence relation containing ≥.

14.3.2 Skeleta
Remark 14.3.2. Let X be a CW complex. For every n Ø 1, the natural
function X

n≠1 æ X
n is an injection. Indeed, when considering the quotient

X
n≠1 ·

(
·

–œAn≠1

D
n) æ X

n

we can classify the pre-images of elements z œ X
n, thanks to Remark 14.3.1.

The preimage of z under the above map is either:

(i) A set that intersects the interior of one of the n-cells, in which case
[z] = {z} contains exactly one element, or

(ii) A set that intersects X
n≠1, in which case [z] contains exactly one ele-

ment z œ X
n≠1, and contains all points y œ ‡

– D
n for which „–(y) = z.

It follows that the composition

X
n≠1 æ X

n≠1 ·
(

·

–œAn≠1

D
n) æ X

n

is an injection.
For this reason, we will often consider X

n≠1 as a subset of X
n, identifying

X
n≠1 with its image under the above injection. This abuse will hopefully

make our mathematics easier, and not harder. It is also a very common
practice.

As a result, if X is a CW-complex, the set X
n will be treated as a subset

of X.

Definition 14.3.3. Let X be a CW complex. We call X
n µ X the n-skeleton

of X.4

Example 14.3.4. Suppose X is a CW complex and equals X
n for some finite

n. If n is the smallest such integer, then X = X
n, and X is an n-dimensional

CW complex.
4
By Remark 14.3.2, we treat X

n
as a subset of X.
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14.4 Exercises
Exercise 14.4.1. Work out Example 14.2.8 to make sure you understand
the claims there.

Exercise 14.4.2. Fix n Ø 1. Let A0 have exactly one element, An have
exactly one element, and Ai = ÿ for all other i. It turns out there is a unique
CW complex with these cells. Convince yourself it must be the n-dimensional
sphere.

Exercise 14.4.3. Let A0 have exactly one element, A2 have exactly three
elements, and let A1 = ÿ. Draw the (unique) two-dimensional CW complex
you can create from these sets of cells.

Exercise 14.4.4. Convince yourself that any polyhedron is a two-dimensional
CW complex.

Exercise 14.4.5. Suppose that A0 consists of three elements and that A1
consists of three elements.

(a) Prove there are 729 possible choices for the set {„–}–œA1 . That is, there
are 729 ways to construct a CW complex out of three 0-cells and three
1-cells.

(b) Draw every homeomorphism type that can be made from three 0-cells
and three 1-cells. You should be able to draw exactly 13.

(c) Convince yourself that, up to homotopy equivalence, there are exactly 5
1-dimensional CW complexes with three 0-cells and three 1-cells.


