CW Complexes
O-dimensional:
Fix a set A_{0}, called the set of 0 -cells Define $x^{0}:=\frac{11}{A_{0}} D^{\circ}$

$$
D^{\circ}=\left\{x \in \mathbb{R}^{0} \mid\|x\| \leq 1\right\}=\mathbb{R}^{0} \cong p t
$$

X^{0} is called a O-dimensional $C W$ complex
Each D° is called a 0 -cell (of X°)
1-dimensional:

$$
\partial D^{n}:=S^{n-1}
$$

"del", "partial"
Fix a set A_{1} (of 1-cells) means"boundary" here
$\forall \alpha \in A_{1}$, fix a continuous map $\Phi_{\alpha}: \partial D_{\alpha}, \rightarrow X^{0}$
$D_{\alpha}^{\prime}=D^{\prime}$ (we have a copy of D^{\prime} for each α) index

For each boundary point of D_{α}^{\prime}, which point in X° it goes to

$$
x^{\prime}:=x^{0} \Perp\left(\frac{\Perp}{\alpha \in A_{1}} D^{\prime}\right) /_{\forall \alpha, \forall y \in \partial D_{\alpha}}^{y \sim \Phi_{\alpha}(y)}
$$

$$
\frac{\|}{\alpha} D_{1}=
$$

We say X^{\prime} is a 1- dimensional CW complex

2-dimensional:
Fix a set A_{2} (of 2-cells)
$\forall \alpha \in A_{2}$, fix a continuous map $\Phi_{\alpha}: \partial D_{\alpha}^{2} \rightarrow X^{\prime}$ (a lot more choices for Φ_{2} this time)
Example:

Can move forward and back - still continuous
Set $x^{2}:=\left(x^{1} \Perp\left(\prod_{\alpha \in A_{2}} D^{2}\right) / \begin{array}{l}\forall \alpha \in A_{2} \\ \forall y \in D_{\alpha}^{2} \\ y \sim \Phi_{2}(y)\end{array}\right.$

Example:

$$
\begin{aligned}
& A_{0}=\{*\} \quad \cdot X^{0} \\
& A_{1}=\phi \\
& A_{2}=\{*\} \\
& D: \\
& \\
& \\
& \\
& \\
& =S^{1} \rightarrow X^{2} \rightarrow X^{1} \cong p t \\
&
\end{aligned}
$$

(1) uniquely determined because must send every element of S^{\prime} to a point

Took rubber sheet and stretch it out to attach every point on boundary to a single point, like a balloon, collapse boundary to single point (like pinching end of balloon), so $x^{2} \cong S^{2}$
n-dimensional:
Fix a set A_{n} (of n-cells)
$\forall \alpha \in A_{n}$, fix a continuous map $\Phi_{\alpha}: \partial D_{\alpha}^{n} \rightarrow X^{n-1}$
$\begin{aligned} & \text { Set } X^{n}:=\left(X^{n-1} \Perp\left(\frac{1}{2 \in A_{n}} D^{n}\right)\right)^{p} / \\ & \forall \alpha \in A_{n}{ }_{2} \\ & \forall y \in \partial D_{\alpha} \\ & y \sim \Phi_{x}(y)\end{aligned}$
Ex: $A_{0}=\{*\}$

$$
\begin{aligned}
& \left.\begin{array}{l}
A_{1}=A_{2}=\cdots=A_{n-1}=\varnothing \\
A_{n}=\{*\}
\end{array}\right\} \begin{array}{l}
\text { Anything with } \\
\text { must be } s^{n}
\end{array} \\
& \begin{array}{l}
A_{n}=\{*\} \\
\exists!\Phi: \partial D^{n} \rightarrow X^{n-1}
\end{array} \\
& \exists!\Phi: \partial D^{n} \rightarrow X^{n-1}
\end{aligned}
$$

Ex:

$$
\begin{aligned}
& A_{0}=\{*\} \\
& A_{1}=A_{2}=\cdots=A_{n-1}=\phi \\
& A_{n}=\left\{a_{1} b_{1} c\right\}
\end{aligned}
$$

$\exists!\Phi: \partial D^{n} \rightarrow X^{n-1}$ point, so ϕ uniquely determined

$$
x^{n}:=\frac{S^{n-1}}{x^{n-1} \Perp\left(D^{n} \Perp D^{n} \Perp D^{n}\right)}=
$$

$$
=
$$

 point i.e. bouquet of $3 \mathrm{~s}^{n} \mathrm{~s}$
Fact: The natural map $x^{n-1} \rightarrow x^{n}$ is an injection

$$
X^{n-1} \rightarrow X^{n-1} \Perp\left(\frac{\Perp}{\alpha} \Delta^{n}\right) \underset{T_{\text {surjec }}}{\rightarrow} x^{n}
$$

(see reading)
So, we can treat each x^{n-1} as a subspace of x^{n}.
So, given:

- An for every $n \geqslant 0$
- Maps $\Phi_{\alpha}: D_{\alpha} \rightarrow x^{n-1}, \forall \alpha \in A_{n}$
we define $x:=\bigcup_{n \geq 0} X^{n}$ (including a bunch of subsets into bigger sets)
$U \subset X$ open iff $\forall n, u \cap x^{n}$ is open
A space x made in this way is called a c W-complex. The data $\left\{A_{n}, \Phi_{n}\right\}$ is a cw structure on X.
Example: $\triangle \cong D^{2}$ so \ldots
and boundary of tetrahedron two different CW Structures on S^{2}
We call x^{n} the n-skeleton (or, n-dimensional skeleton) of x. We say X is an n-dimensional cW complex if n is the smallest number for which $X=X^{n}$

Ex:

$$
\begin{aligned}
& A_{0}=p t \\
& A_{1}=A_{2}=\cdots=A_{n-1}=\varnothing \\
& A_{n}=p t \\
& A_{n+1}=A_{n+2}=A_{n+3}=\cdots=\varnothing \\
& X^{n}=x^{n+1}=x^{n+2}=\cdots=X
\end{aligned}
$$

So, X is n-dimensional
Emphasis:

- Definition is inductive - good thing because we can try to understand it dimension by dimension
- The meat is in $\left\{\Phi_{\alpha}\right\}$

Next: $\cdot \mathbb{R} P^{n}$

- After spring break, CW structure on $\mathbb{R} P^{n}$

