
Reading 11

Invariance of domain and
Brouwer fixed point

Today we will prove two important results due to Brouwer.

11.1 Invariance of domain
The first theorem we prove is called invariance of domain. Here is one version
of it:

Theorem 11.1.1 (Brouwer). If m ”= n, then Rn and Rm are not homeomor-
phic.

This result, I hope, seems intuitive. Indeed, the result helps to justify
the entire machinery of topological spaces. Imagine if somebody created a
theory for numbers where 1 is equal to 2. It would be just as absurd to make
a theory of spaces where R is equivalent to R2.

Regardless, Invariance of Domain is not easy to establish. For example,
you might think that there are no bijections between Rm and Rn, but there
are. In fact, you can even find a continuous surjection from Rm to Rn if
1 Æ m Æ n. The take-away from this is that continuous functions can,
actually, behave rather wildly.1

Here is an immediate corollary:
1
However, if one only studies functions that have derivatives (so, di�erentiable functions

– these are more special than continuous functions) such pathologies disappear.
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Corollary 11.1.2. Rm is homeomorphic to Rn if and only if m = n.
Remark 11.1.3. Invariance of domain was one of the major accomplish-
ments of the Dutch mathematician L.E.J. Brouwer2, whose proof was pub-
lished in 1912.

11.1.1 A proof using one-point compactifications
Proof. Suppose there exists a homeomorphism j : Rm æ Rn. Then j induces
a homeomorphism between the one-point compactifications

(Rm)+ æ (Rn)+
.

Knowing that the one-point compactification of Rm is S
m, we witness a

homeomorphism from S
m to S

n. However, such a homeomorphism cannot
exist, as S

m and S
n have non-isomorphic homology groups.

11.1.2 A proof by removing a point
Proof. Suppose there exists a homeomorphism j : Rm æ Rn. Then j induces
a homeomorphism

Rm \ {0} æ Rn \ {j(0)}.

However, we know that “Rm minus a point” is homotopy equivalent to S
m≠1.

Thus, the above homeomorphism exhibits a homotopy equivalence between
S

m≠1 and S
n≠1. This is impossible unless m = n, because spheres of di�erent

dimensions have non-isomorphic homology groups.

11.1.3 Manipulating spaces can be powerful
The above proofs not only required homology (a machine with a lot of set-
up). The two proofs each required a nice “trick,” or more accurately, a nice
way to alter the spaces Rm and Rn into something else we understand. This
is a good strategy to keep in mind in the future. Removing points (or more
generally, removing subsets) or adding a point (or more generally, adding
sets) to form new spaces can be very powerful.

2
Brouwer was on the founders of modern topology as we know it. Three of his major

results: Invariance of domain, the Brouwer fixed point theorem, and simplicial approxi-

mation, are staples of the field. Indeed, simplicial approximation is an amazing result –

up to homotopy, a lot of topology really can be studied combinatorially. Unfortunately,

we will not discuss simplicial approximation in this course.
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11.2 Brouwer Fixed Point Theorem
Next we prove the following Brouwer fixed point theorem. Unlike Invariance
of Domain, its truth is not obvious – nor its utility. But the result is, it turns
out, incredibly powerful.

Theorem 11.2.1 (Brouwer Fixed Point Theorem). For any n Ø 0, any
continuous function from D

n to itself has a fixed point.

Put another way, if f : D
n æ D

n is continuous, there exists at least one
x œ D

n for which f(x) = x.

Remark 11.2.2. The theorem is false for many topological spaces.
For example, let X = Rn and fix a non-zero vector v œ X. Then the

function X æ X with x ‘æ x + v has no fixed points. One has a sense that
the compactness, or at least the boundedness, of D

n is important.
As another example, let X = S

1 and fix an angle e
iv œ S

1 that does not
equal 0 (modulo 2fi). Then the function X æ X with e

i◊ ‘æ e
i◊

e
iv has no

fixed points. So even when X is compact, there exist continuous functions
from X to itself having no fixed points. More generally, any sphere has a
self-map with no fixed points: Take x to ≠x.

So something indeed is special about the disk.

Remark 11.2.3. One can prove (using something called the Lefschetz Fixed
Point Theorem) that if X is any compact space admitting a triangulation,
and if X has the homology of a point, then any continuous map from X to
itself must have a fixed point.

On the other hand, the triangulation condition is not a necessary condi-
tion – for example, take X to be the finite poset {0 < 1}. This does not
admit a triangulation because it is not even Hausdor�. But any self-map
must have a fixed point.

I do not know of a clean description of a class of spaces where every
continuous self-map must have a fixed point.

Corollary 11.2.4. Let X be a topological space homeomorphic to D
n for

some n. Then any continuous function f : X æ X has a fixed point.

Proof. Let f : X æ X be a continuous function. Choose a homeomorphism
h : X æ D

n and let f
Õ = h ¶ f ¶ h

≠1. Then there exists some y œ D
n such
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that f
Õ(y) = y by the Brouwer fixed point theorem. Letting x = h

≠1(y), we
find that

f(x) = h
≠1(f Õ(h(x)) = h

≠1(f Õ(y)) = h
≠1(y) = x.

Example 11.2.5. Take a table cloth on your table. Crumple it up and
smash the tablecloth back onto your table – not spread out nicely or anything,
but just don’t tear the tablecloth. Then there is at least one point on the
tablecloth that ends up above the exact same place on the table it began.

11.2.1 The best proof

x

f(x)

y

f(y)

z

f(z)

g(x)

g(y)

g(z)

Figure 11.2.6. Some examples of x, f(x), and g(x).



11.2. BROUWER FIXED POINT THEOREM 85

Proof. Suppose that f : D
n æ D

n is a continuous function with no fixed
points. Then for every x œ D

n, consider the ray rx from f(x) to x. Define a
new function

g : D
n æ D

n

which sends an element x to the place where rx intersects S
n≠1. See Fig-

ure 11.2.6. Note that if x œ S
n≠1, then g(x) = x. So the composition

S
n≠1 i≠æ D

n g≠æ S
n≠1

of g with the inclusion map i is the identity function on S
n≠1.

This means that the induced map on homology iú must be an injection
(for every n Ø 0 and every coe�cient group A).

However, it is impossible for iú to be an injection for every n and A.
If n Ø 2, we note that the homology groups of D

n are trivial in degrees
k Ø 1, while S

n≠1 has non-trivial homology in Hn≠1. If n = 1, we know that
H0(S0) ≥= A ü A while H0(D1) = A. Setting A = F2 (or any finite abelian
group), one sees a contradiction because a set of cardinality 22 = 4 does not
admit an injection into a set of cardinality 2.

(One could also set A = Z and observe there is no injection from Z ü Z
to Z. This is a good exercise.)

The assumption that f has no fixed points has led to a contradiction.

11.2.2 A proof by Hiro
The preceding proof is, by far, the best proof of Brouwer Fixed Point I know.

However: Any time you present a result, you should try to think about
how you would prove it. This not only gives you more insight, it also allows
you to explain to your audience why certain proofs are tricky or elegant.
That’s what I did. So here is a much worse proof.

Let � µ D
n ◊ D

n denote the diagonal – that is, the set of points (x, x) œ
D

n ◊ D
n.

If f : D
n æ D

n is a continuous function, the “graph”

D
n æ D

n ◊ D
n
, x ‘æ (x, f(x))

is continuous. We assume f has no fixed points (for the sake of contradiction),
so that the above map factors through (Dn ◊ D

n) \ �:

D
n æ (Dn ◊ D

n) \ �, x ‘æ (x, f(x)) (11.2.2.1)
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Lemma 11.2.7. The “horizontal inclusion” map

S
n≠1 æ (Dn ◊ D

n) \ �, x ‘æ (x, 0) (11.2.2.2)

is a homotopy equivalence. (Here, 0 is the origin of D
n.)

Lemma 11.2.8. The map (11.2.2.2) is homotopic to the composition

S
n≠1 i≠æ D

n (11.2.2.1)≠≠≠≠≠æ (Dn ◊ D
n) \ �.

Here, i is the inclusion map.

Proof of Brouwer Fixed Point Theorem assuming the above lemmas. By Lemma re-
flemma. brouwer fixed point second lemma, the map on homology

iú ¶ (11.2.2.1)ú

is equal to the map on homology

(11.2.2.2)ú.

The latter is an isomorphism, whence it follows that iú must be an injection.
This is impossible, because the homology of S

n≠1 cannot inject into the
homology of D

n (as we saw at the end of the “best proof”).

Remark 11.2.9. So, the beginnings of the two proofs are di�erent, but they
stick the landing in the same way: by using knowledge of homology. There
are plenty of proofs that do not explicitly use homology. The most famous
one is most likely the proof involving Sperner’s Lemma; we don’t touch on
this here.

Remark 11.2.10. While the proof becomes slightly tedious when proving
Lemmas 11.2.7 and 11.2.8, you should that the ideas that go into – consider-
ing the graph of a function, and playing around with the diagonal – are very
common ideas in mathematics. So understanding this proof won’t hurt.

Proof of Lemma 11.2.7. Given an element (x, y) œ D
n ◊ D

n, we can write it
as a sum of vectors

(x + y

2 ,
x + y

2 ) + (x ≠ y

2 ,
y ≠ x

2 ).
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(I have written (x, y) as a sum of a diagonal part and an antidiagonal part.)
Note that x ”= y, if and only if the antidiagonal term is non-zero. There is a
homotopy

H(x, y, t) = (1 ≠ t)(x + y

2 ,
x + y

2 ) + (x ≠ y

2 ,
y ≠ x

2 )

shrinking the diagonal component to zero. Because the antidiagonal sum-
mand is unchanged throughout this homotopy, the homotopy can be chosen
to have domain ((D ◊ D) \ �) ◊ [0, 1] and codomain (D ◊ D) \ �. Now,
the antidiagonal is homeomorphic to D

n, and the antidiagonal without its
origin is homeomorphic to D

n \ {0}. By radially contracting outward, one
witnesses a homotopy equivalent to the sphere inside the antidiagonal – that
is, the set of points (x, ≠x) with x œ S

n≠1.
Finally, there is a homotopy taking (x, ≠x) to (x, 0) (leaving the first

coordinate fixed). Composing all the homotopy equivalences, one finds that
the inclusion of S

n≠1 ◊ {0} is a homotopy equivalence to (Dn ◊ D
n) \ �.

Proof of Lemma 11.2.8. Consider the straightline homotopy

H : S
n ◊ [0, 1] æ (Dn ◊ D

n) \ �, (x, t) ‘æ (x, (1 ≠ t)f(x)).

At t = 0, the the image of H(≠, 0) is indeed not contained in the diagonal
by the hypothesis that f has no fixed points. For 0 < t Æ 1, the norm
of (1 ≠ t)f(x) is either 0 or strictly smaller than |f(x)|, and hence strictly
smaller than 1. It follows that x – which is a point on the unit sphere – and
(1 ≠ t)f(x) are not equal; this shows that the homotopy indeed takes place
in (Dn ◊ D

n) \ �.

Remark 11.2.12. It is illustrative to study these ingredients in the case
n = 1. There, D

1 ◊ D
1 is the square [≠1, 1] ◊ [≠1, 1]. The diagonal � is the

set of points (t, t) with ≠1 Æ t Æ 1. Indeed, (D1 ◊ D
1) \ � is a union of two

triangles – each triangle has two legs, and the hypoteneuse “missing”. Note
that (D1 ◊ D

1) \ �1 is disconnected; on the other hand, D
1 is connected, to

the map
D

1 æ (D1 ◊ D
1) \ �, x ‘æ (x, f(x))

must lie entirely in one of the connected components of the codomain. But
the lemmas above show that the the above function (when restricted along
S

0) is homotopic to the “horizontal inclusion” map sending x œ S
0 to (x, 0) œ
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(a) (b) (c)

(d) (e) (f)

(p, f(p))

(q, f(q))

(p, f(p))
(q, f(q))

(p, f(p)) (q, f(q))

Figure 11.2.11. On the top row, an image of (a) D
1 ◊ D

1 (which is a
square), (b) (D1 ◊ D

1) \ � (a square with a diagonal removed; note the two
open circles at the end points of the diagonal, indicating those two corners are
not elements of (D1 ◊D

1)\�), (c) another drawing of (D1 ◊D
1)\�, making

it clear there are two connected components (each component is drawn as a
triangular shape). Each triangular shape is homotopy equivalent to a point,
so the drawing in (c) is consistent with the claim that (D1 ◊ D

1) \ � is
homotopy equivalent to S

0.
On the bottom row, we let p and q denote the two points of S

0 µ D
1. Drawn

are examples of what (p, f(p)) and (q, f(q)) could look like (for three di�erent
functions f). Note that no matter what, (p, f(p)) and (q, f(q)) end up on
di�erent components of (D2 ◊ D

2) \ �.
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(D1◊D
1)\�. But the points (≠1, 0) and (1, 0) are in two di�erent connected

components of the codomain; this is a contradiction.
See Figure 11.2.11.

Exercise 11.2.13. Make sense of Remark 11.2.12. If possible, make draw-
ings.

11.2.3 Reprise: Manipulating spaces and functions can
be powerful

The proofs of the Brouwer Fixed Point theorem involved ingenuity: In the
best proof, we created a new function g out of the hypothesis that f has no
fixed point. In Hiro’s proof, we studied the graph of f , and we were thereby
led to studying modifications of D

n ◊ D
n. (The hypothesis that f has no

fixed points is the inspiration for removing the diagonal.)
There are examples of “fun” proofs that require a bit of creativity. In early

math courses and early exercises in any field, most exercises are just about
making sure one understands the definitions. But proofs of true theorems
often require much more than just understanding definitions – you need to
think of new insights. Having an insight like “maybe I can consider this
other function” or “I am going to manipulate another topological space to
help me” will come only with familiarity with topology.

Remark 11.2.14. Topologists like Hiro are often used to thinking about
spaces like X ◊ X and the geometry of the diagonal in X ◊ X. So to a
seasoned topologist, nothing is really ingenious about Hiro’s proof. But to a
learning topologist, the ingredients of the proof can seem unmotivated and
out-there. Don’t worry.

Watching a sculptor make a statue is amazing – how do they do that?. It
takes experience and a lot of practice. And if you can’t make Michelangelo’s
David, even after seeing picture after picture of it, you wouldn’t worry. You
know you have to train as a sculptor to do that kind of thing, and moreover,
Michelangelo is a master.

I am no master, but give yourself the same patience with proofs in this
course. Watching a sculptor doesn’t tell you how to sculpt. But start digging
into the ingredients in these proofs, and trying to understand them – you will
grow.


