Questions?
Reminder: \forall ab. gp, A, have a functor called homology:

$$
\begin{aligned}
& x \mapsto\left(H_{n}(X ; A)\right)_{n} \geq 0 \\
& f: x \rightarrow y \mapsto\left(f_{*}: H_{n}(X ; A) \rightarrow H_{n}(Y ; A)\right)_{n} \text { cts. }
\end{aligned}
$$

Theorem: Existence of MV Sequence
Let $\{u, v\}$ be a two-element open cover of X.
Then, $\forall n \geq 1, \exists$ gp. homs. $\delta: H_{n}(x) \rightarrow H_{n-1}$ (unv) fitting into an exact sequence

$$
\begin{aligned}
& \therefore H_{n}(u n v) \stackrel{j}{\longrightarrow} H_{n}(u) \oplus H_{n}(v) i \\
& a \longmapsto H_{n}(x) \\
&((j u) * a,(j v) * a) \\
&(b, c) \longmapsto(i u)_{k} b-(i v) * c
\end{aligned}
$$

$$
\begin{aligned}
& j u: U \cap v \rightarrow u \\
& j v: U \cap v \rightarrow v
\end{aligned}
$$

inclusion maps are cts.

$$
i_{u}: u \rightarrow x
$$

$$
i v: \vee \rightarrow X
$$

${ }^{\prime} \mathrm{H}_{n-1}(u \cap v) \xrightarrow{j} \ldots$

$$
H_{0}(u \cap v) \rightarrow H_{0}(u) \oplus H_{0}(v) \rightarrow H_{0}(x) \rightarrow 0
$$

Reminder: "Exact" means the kernel of each map is the image of the previous map
Example: Suppose $X=A \Perp B$ (as a space, meaning there is a topology on this set; $U \subset X$ is open $U \cap A, U \cap B$ are both open (in A, B))
Then, $\{u=A, v=B\}$ is an open cover.
And $u \cap v=\phi$.

Here we are using the axiom that all the homology groups of the empty set are
(isomorphic to) the zero (isomorphic to) the zero group.

Prop: If $f: x \rightarrow y$ is a homotopy equivalence, then f_{*} is an isomorphism

Definition: $f \sim g$ iff \exists continuous $H: X \times[0,1] \rightarrow Y$ s.t. $H(x, 0)=f(x)$ and $H(x, 1)=g(x), \forall x$

Definition: $f: X \rightarrow Y$ is a homotopy equivalence of $\exists g: y \rightarrow x$ s.t. $g f \sim i d x$ and $f g \sim i d y$ (f and g assumed continuous) X Isimed Y is our \quad (f and g assumed
notation for " x is
homotopy equivalent to homotopy equivalent to
6.4 .4 (Proof of Prop.)

By axiom $\left(g_{11} f\right)_{*}=\left(i d_{x}\right)_{*}=i d_{H_{n}(x)}$
$g_{*} \circ f_{*}$ (since induced maps respect composition)

$$
f_{*} \circ g_{*}=(f g)_{*}=(i d y)_{*}=i d_{H_{n}(y)}
$$

Next question: Why are i_t and j_t homotopy equivalences?
Why are these homotopy equivalences?

$$
\begin{aligned}
i_{t}: & X \\
& x \mapsto X \times[0,1] \quad j_{t}: X(x, t)
\end{aligned} \quad X \longrightarrow X \times \mathbb{R}, \quad X \mapsto(x, t)
$$

Prop: $\forall t_{0} \in[0,1]$, the function $x \rightarrow x \times[0,1]$

$$
x \mapsto\left(x, t_{0}\right)
$$

is a homotopy equivalence.
Lemma: $\forall t_{0} \in[0,1], \quad p t \rightarrow[0,1]$

* $\mapsto t_{0}$
is a homotopy equivalence.
Proof: pt $\rightarrow[0,1] \rightarrow p t$ is id pt OTOH, consider $H:[0,1]_{t} \times[0,1]_{s} \rightarrow[0,1]_{t}$ $(t, s) \longmapsto(1-s) t_{0}+s t$
Lemma 2: If $g: y \rightarrow Y^{\prime}$ is a homotopy equivalence, then $\forall X, X \times Y \xrightarrow{i d x a} X \times Y$

$$
(x, y) \longmapsto(x, g(y))
$$

is a homotopy equivalence
Proof of Prop: Combine lemmas

$$
\begin{aligned}
& i d x^{x}(* \rightarrow t .) \\
& X \times p t \cong X \rightarrow X \times[0,1] \\
& (x, *), \quad x \mapsto\left(x, t_{0}\right) \\
& \text { Warning: We wont give }
\end{aligned}
$$

Graphs
Definition: A graph is a shape made of vertices and
Ex:

(1 vertex)
(1 vertex, l edge)
(2vertices, ledge)
(1 vertex, 2 edges)
Remark: Some graphs are not planar, so must be For graphs with finitely many vertices and edges, their topologies are independent of these embeddings.
These are topological spaces (they are drawn in \mathbb{R}^{2}, so inherit subspace topology) called vertices.
Proposition: If X is a tree (nonempty with no cycles) then any inclusion pt $\rightarrow X$ is a homotopy equivalence.
Idea: Any tree admits a root. Can homotope everything to a point (i.e.
flow into the root from every vertex) So, homology groups are same as pt.

Ex: $x=\infty$ Figures graph

$$
\begin{aligned}
& u=O C_{0}^{0}=O \simeq S^{\prime} \\
& v=\begin{array}{l}
\text { can } \\
\text { contract } \\
\text { antennae } \\
\text { to circle }
\end{array} \\
& u \cap v=X_{0}^{0} \simeq p t \text { (can contract into point) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}_{2}(\mathrm{Unv}) \longrightarrow \mathrm{H}_{2}(\mathrm{U}) \underset{\mathrm{O}}{\oplus} \mathrm{H}_{2}(v) \longrightarrow H_{2}(x)
\end{aligned}
$$

$$
\begin{aligned}
& \underset{A}{\mathrm{H}_{0}(U \cap V) \xrightarrow{\Delta} \underset{A}{\mathrm{~A}} \mathrm{H}_{0}(\mathrm{U}) \oplus \underset{A}{\mathrm{H}_{0}}(v)} \longrightarrow \underset{A}{\mathrm{H}_{0}(V)} \rightarrow 0 \\
& a \longmapsto(a, a) \\
& H_{n}(x) \cong\left\{\begin{array}{cc}
0 & n \geq 2 \\
A \oplus A & n=1 \\
A & n=0
\end{array}\right.
\end{aligned}
$$

Pants

Note: The pair of pants is homotopy equivalent to a figure 8. (The green circle in the middle should be a figure 8.)

