
Reading 9

Mayer-Vietoris practice: The
torus and the pair of pants

All I have told you are the homology of a point, the homology of the empty
set, and the basic properties of homology (functoriality, homotopy invariance,
and Mayer-Vietoris). This was enough to compute the homology groups of
Euclidean space and some graphs.

Remark 9.0.1. In fact, the techniques you have seen are enough to compute
the homology of all finite graphs. Give it a try!

We continue our computational march. Today we tackle surfaces.

9.1 The torus
In Homework One, you studied a particular open cover of the torus. In
Figure 9.1.1 we draw a sketch of U, V and U fl V .

Notation 9.1.2. It is common to use the notation

T
2

to denote the torus, so we will do so.

We recognize that U and V are homeomorphic to cylinders S
1 ◊R, which

are homotopy equivalent to S
1. And we have already seen the homology of

the circle (from the day of first examples, or from homework).
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Figure 9.1.1. A cover of a torus (top image) by two open subsets U and V .
Also pictured, in the lower-right, is the intersection of U and V .

On the other hand, U flV is a disjoint union of two cylinders, so we know
how to compute its homology. (The homology of U fl V is the direct sum of
two copies of the homology of S

1.)

So the Mayer-Vietoris sequence becomes:

... //
... //

...

rr
H2(S1 ‡

S
1) // H2(S1) ü H2(S1) // H2(T 2)

rr
H1(S1 ‡

S
1) // H1(S1) ü H1(S1) // H1(T 2)

rr
H0(S1 ‡

S
1) // H0(S1) ü H0(S1) // H0(T 2) æ 0

and plugging in our knowledge of the homology of S
1, say with Z coe�cients,
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gives us
... //

... //
...

tt0 // 0 // H2(T 2)

tt
Z ü Z // Z ü Z // H1(T 2)

tt
Z ü Z // Z ü Z // H0(T 2) æ 0

Now, there are many group homomorphisms from ZüZ to ZüZ. (There are
lots of 2-by-2 integer matrices!) So we will use the geometry of the situation
to figure out what these horizontal arrows in row 0 and row 1 are.

9.1.1 Higher homology groups vanish for a torus
Note that for n Ø 2, the first and second column of the Mayer-Vietoris
sequence are all zero groups. Thus, by Remark 7.4.1,

Hn(T 2) ≥= 0 for all n Ø 3.

9.1.2 Computing H0 of a torus
In Row 0, let us examine the map

H0(U fl V ) æ H0(U) ü H0(V ). (9.1.2.1)

We know that the inclusion of U fl V into U is the inclusion of two cylinders
into U . From each of these cylinders, the map to H0(U) is an isomorphism
(Exercise 8.1.2). The only isomorphisms from Z to Z are ±1, so we can at
least write the first row of this 2-by-2 matrix (up to choosing a basis for
H0(U)) as A

1 ±1
? ?

B

.

Again, up to the sign ambiguity of choosing a basis for H0(V ), we can fill in
the bottom row of the matrix by the same reasoning, to conclude that this
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horizontal arrow is encoded in the matrix
A

1 1
1 1

B

or
A

1 ≠1
1 ≠1

B

The kernel of this matrix is the antidiagonal (or the diagonal).
On the other hand,the map H0(T 2) æ 0 is the zero map – so all of H0(T 2)

is the kernel. By exactness of the Mayer-Vietoris sequence, we conclude
that all of H0(T 2) is the image of the previous map. That is, the map
Z ü Z æ H0(T 2) is a surjection. So, by the first isomorphism theorem, we
know that H0(T 2) is isomorphic to the quotient of Z ü Z by the kernel of
this surjection. But in the previous paragraph, we computed this kernel to
be either the diagonal or the antidiagonal!

So by Exercise 8.1.1, we conclude that

H0(T 2) ≥= Z.

Remark 9.1.3. Note that this computation was identical to what we did
when we computed H0(S1) in Section 8.1.2.

9.1.3 Computing H2 of a torus
As for the H1 row, let us study the map

H1(U fl V ) æ H1(U) ü H1(V ). (9.1.3.1)

The inclusion of each cylinder in U fl V to U is a homotopy equivalence, so
induces an isomorphism on homology. We thus see (just as before) that the
first row of the 2-by-2 matrix – up to choosing a basis for H1(U) – is given
by (1, ±1). The same reasoning for the inclusion U fl V Òæ V gives the same
entries (up to choosing a basis for H1(V )) for the second row of the matrix.
Thus, (9.1.3.1) also encoded in the matrix

A
1 1
1 1

B

or
A

1 ≠1
1 ≠1

B

The kernel of this matrix is the antidiagonal (or the diagonal).
On the other hand, because the Mayer-Vietoris sequence is exact, the

portion
0 // H2(T 2)

vv
Z ü Z
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tells us that the diagonal map is an injection (because the previous map is
zero); by exactness, the image of the diagonal map is precisely the kernel of
the next map (i.e., of (9.1.3.1)). So we conclude that

H2(T 2) ≥= Z

(because the anti/diagonal of Z ü Z is isomorphic to Z).

9.1.4 Computing H1 of a torus
This is the hardest part of the story.

Let us label some arrows, as below:

Z ü Z A // Z ü Z f // H1(T 2)
”

tt
Z ü Z

B

// Z ü Z

(The ” stands for “diagonal.”) We have computed the matrix A, so we
know that the image of A is either the diagonal or the antidiagonal in ZüZ.
Because the Mayer-Vietoris sequence is exact, we thus know that f has kernel
given by the anti/diagonal. In other words, by the first isomorphism theorem
and Exercise 8.1.1, we see that the image of f is isomorphic to Z. Using the
exactness of the Mayer-Vietoris sequence at H1(T 2), we conclude

the kernel of ” is isomorphic to Z.

We also computed the map B to have kernel given by the diagonal or antidi-
agonal in Z ü Z. By exactness of Mayer-Vietoris, we conclude:

the image of ” is isomorphic to Z.

Again using the first isomorphism theorem, we know that

H1(T 2)
ker(”)

≥= im(”)

In other words, H1(T 2) is a group that admits a surjection to Z with kernel
Z.
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Proposition 9.1.4. Let A be an abelian group admitting a surjective group
homomorphism to Z with kernel Z. Then A is isomorphic to Z ü Z.

By Proposition 9.1.4 and our previous work, we conclude

H1(T 2) ≥= Z ü Z.

Remark 9.1.5. Proposition 9.1.4 is not obvious. When you start out study-
ing abelian groups, you might think that if A surjects onto C with kernel B,
then A must be isomorphic to B ü C. This is not the case. As an example,
consider the short exact sequence

Z/2Z æ Z/4Z æ Z/2Z

where the first map sends [0] ‘æ [0] and [1] ‘æ [2], while the second map
sends [0] and [2] to [0] while sending [1] and [3] to [1]. Of course, Z/4Z is
not isomorphic to Z/2Z ü Z/2Z – the latter only has elements of order two,
while Z/4Z has two elements of order four.

Proof of Proposition 9.1.4 . For notational clarity, let I = Z. By hypothesis,
there exists a surjective group homomorphism g : A æ I with kernel K. Also
by hypothesis, there exists a group isomorphism h : Z æ K.

Because g is a surjection, we may choose an element a œ A for which
g(a) = 1. By the universal property of Z – Exercise 4.3.4 – this is a (unique,
though we won’t need this) group homomorphism f : Z æ A sending 1 to a.
I claim that the homomorphism

Z ü Z æ A, (x, y) ‘æ f(x) + h(y) (9.1.4.1)

is an isomorphism.
Suppose f(x) + h(y) = f(xÕ) + h(yÕ). It follows that g(f(x)) = g(f(xÕ)).

On the other hand, by definition, gf is the group homomorphism Z æ Z
sending 1 to 1 – in particular, it is an isomorphism – so x = x

Õ. It follows that
h(y) = h(yÕ). But h is an injection, so y = y

Õ. We have shown that (9.1.4.1)
is an injection.

On the other hand, for any a
Õ
, a

ÕÕ œ A with g(a) = g(aÕÕ), we know that
a

Õ = a
ÕÕ+k for some k œ K. (For one way to see this, use the first isomorphism

theorem and the definition of A/K.) Choosing a
ÕÕ = g(a)a and n = h

≠1(k),
we find that a

Õ = f(g(a)) + h(n). Because a
Õ was arbitrary, (9.1.4.1) is a

surjection.
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9.2 Pairs of pants

Figure 9.2.1. Pairs of pants. The top two images are closed pairs of pants.
The bottom two images are open pairs of pants.

Figure 9.2.2. A retraction from a pair of pants to a figure eight.

By a pair of pants, I mean a space that is homeomorphic to one of the
two following spaces:

(i) The space obtained from a closed disk in R2 by removing two open,
disjoint disks that stay away from the boundary.
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(ii) The space obtained from an open disk in R2 by removing two closed,
disjoint disks.

One might call the former the closed pair of pants, and the latter the open
pair of pants. Though the descriptions above do not make it clear, these
spaces really are homeomorphic to shapes that look like pairs of pants. See
Figure 9.2.1.

Proposition 9.2.3. The pair of pants (whether open or closed) is homotopy
equivalent to a figure eight graph.

Proof sketch. We do not give a rigorous proof. We give a proof by picture
(which is not a proof! But gives an idea of how to proceed) in Figure 9.2.2.

Remark 9.2.4. It turns out that for many reasonable objects, “attaching
the boundary” of a space (which, when the space is embedded somewhere, is
taking a closure of a space) does not change its homotopy equivalence class.
For kinds of spaces called smooth manifolds, this is not too hard to prove,
but we don’t have the language for this just yet.

You’ve seen this already. The spaces R and [0, 1] and (0, 1) are all homo-
topy equivalence.

Exercise 9.2.5. For A = F2 and A = Z, compute the homology groups of
the pair of pants (open or closed).

In fact, there are at least two ways to do this. You could use Proposi-
tion 9.2.3, or you could choose a nice pair of open subsets covering the pair
of pants and apply Mayer-Vietoris. If you have time, try both ways.


