
Reading 8

H0, the circle, graphs

Today we will compute the homology of the circle, and some graphs.

8.1 Short exact sequences and a proposition
about very short exact sequences

This section is new as of February 15
Let’s get some more practice with this notion of “exactness” of a sequence.

Definition 8.1.1. A short exact sequence is an exact sequence of group
homomorphisms (between abelian groups) of the form

0 æ A æ B æ C æ 0.

Proposition 8.1.2. Any short exact sequence induces an isomorphism B/A ≥=
C.

Remark 8.1.3. Let us be more precise with the claim – after all, A is not a
subgroup of B, so there is no way to quotient B by A.

Let us label the homomorphisms as follows:

0 z
// A

f
// B

g
// C

z
Õ
// 0 (8.1.0.1)

By exactness, im(z) = ker(f); because the domain of z is the zero abelian
group, the image of z is trivial (i.e., the image consists of the 0 element of
A). Thus ker(f) is trivial, so f is an injection.
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66 READING 8. H0, THE CIRCLE, GRAPHS

In this way, we can identify A with a subgroup of B by identifying A with
f(A). (This is only possible because f is an injection, of course.) So when
we write B/A, one really means B/f(A).

Regardless, the notation B/A is very common in the literature. Now you
know what it actually means.

Proof of Proposition 8.1.2. We follow the notation from (8.1.0.1). We have
already seen that f is an injection.

On the other hand, because z
Õ is the map to the zero group, ker(zÕ) = C.

By exactness, we know that ker(zÕ) = im(g). Thus, by the first isomorphism
theorem, g induces an isomorphism

B/ ker(g) ≥= C.

By exactness, we know ker(g) = im(f), and the claim follows.

Example 8.1.4. The sequence of maps

0 // Z/2Z f
// Z/4Z g

// Z/2Z // 0

– where f takes the element [1] œ Z/2Z to the element [2] œ Z/4Z and g

is the unique onto homomorphism – is a short exact sequence. Note that
Z/4Z is not isomorphic to Z/2Z ü Z/2Z, so short exact sequences can be
interesting: They do not just encode direct sums.

You might have wondered why the above kinds of sequences are called
“short” exact sequences – surely, there are shorter exact sequences! Well,
any exact sequence of a shorter length is much less interesting:

Proposition 8.1.5. If 0 æ A æ 0 is an exact sequence, then A is (isomor-
phic to) the zero group.

If 0 æ A æ B æ 0 is an exact sequence, then the map A æ B is an
isomorphism.

Proof. For the first claim, let us label the maps z : 0 æ A and z
Õ : A æ 0.

Then the image of z is the kernel of z
Õ by exactness. The image of z is trivial

(because the domain of z is the zero group), so z
Õ is an injection. On the

other hand, z
Õ is a surjection (because the codomain of z

Õ is the zero group).
Thus z

Õ is an isomorphism from A to 0. (Indeed, similar reasoning shows
that z is, too.)
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For the second claim, let us label the maps

z : 0 æ A f : A æ B z
Õ : B æ 0.

f is an injection by exactness at A. (The kernel of f is the image of z, which
consists only of the element 0A œ A.) On the other hand, f is a surjection
by exactness at B. (The image of f is the kernel of z

Õ, but z
Õ is the zero map

so its kernel is all of B.) This shows f is a group isomorphism.

Example 8.1.6. Last class, when studying the homology of X
‡

Y , the
Mayer-Vietoris sequence looks liked:

. . . // Hn+1(X
‡

Y )

rr0 // Hn(X) ü Hn(Y ) // Hn(X ‡
Y )

rr0 // Hn≠1(X) ü Hn≠1(Y ) // Hn≠1(X
‡

Y )

rr

... //

... //

...

rr0 // H1(X) ü H1(Y ) // H1(X
‡

Y )

rr0 // H0(X) ü H0(Y ) // H0(X
‡

Y ) æ 0

(The left column consisted of zero because X fl Y = ÿ and all the homology
groups of ÿ were declared to be zero.) By Proposition 8.1.5, all the maps
Hn(X) ü Hn(Y ) æ Hn(X ‡

Y ) must be group isomorphisms.

8.2 Fundamental facts
Exercise 8.2.1. edited as of February 22nd Let A be an abelian group.

Let � be the diagonal:

� := {(a, a) | a œ A} µ A ü A.
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We also let � be the antidiagonal:

� := {(a, ≠a) | a œ A} µ A ü A.

(a) Show that the maps

(A ü A)/� æ A, [(a, b)] ‘æ a ≠ b, and [(a, b)] ‘æ b ≠ a,

are both isomorphisms.

(b) Show that the maps

A æ (A ü A)/� a ‘æ [(a, 0)] and a ‘æ [(0, a)]

are both isomorphisms.

(c) Show that the maps

(A ü A)/� æ A, [(a, b)] ‘æ a + b, and [(a, b)] ‘æ ≠a ≠ b,

are both isomorphisms.

(d) Show that the maps

A æ (A ü A)/� a ‘æ [(a, 0)] and a ‘æ [(0, a)]

are both isomorphisms.

8.3 Path-connectedness and having the ze-
roth homology of a point

This section is new as of February 22
Recall the following notion from point-set topology:

Definition 8.3.1. A space X is called path-connected if X is non-empty1,
and for every x0, x1 œ X, there exists a continuous function “ : [0, 1] æ X

for which “(0) = x0 and “(1) = x1.
1
This is a somewhat annoying convention; it is similar to saying that 1 is not a prime

number. In more advanced algebraic topology, the reason is that we are used to the fact

that fi0(X) – whatever fi0 is – consists of a single point if and only if X is path-connected.

This necessitates that X is non-empty.
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Many topologists have the following intuition: If a space X is path-
connected, then H0(X; A) ≥= A. In other words, if zeroth homology of X

is not just A, then X is not path-connected.
A sign of adulthood in algebra is whether one keeps track of isomor-

phisms, and not just the fact that groups are isomorphic. So here is a more
sophisticated version of the above intuition:

Philosophy: If a space X is path-connected, then any map pt æ X

should induce an isomorphism on H0.

Remark 8.3.2. If X is path-connected, any two maps pt æ X are homo-
topic. So the induced map H0(pt; A) æ H0(X; A) is well-defined regardless
of the choice of pt æ X.

Let me first blow your mind with the fact that there are many kinds
of homology for topological spaces, even when the coe�cient group A is
specified. All of them satisfy the axioms we have articulated so far, but
these axioms do not uniquely determine homology. (They only determine
homology on a collection of topological spaces called CW complexes, which
we will see later in the course.)

And, it turns out that the above Philosophy is correct for the most com-
mon kind of homology and spaces that people study, but can sometimes be
incorrect.

Today, we will see that many of our favorite spaces do satisfy this philos-
ophy.

Definition 8.3.3. (This is a term used only in this course, and for the
purposes of this reading. It is not used by other mathematicians.) Let’s say
that a space X has the zeroth homology of a point if X is path-connected,
and if the2 map

H0(pt; A) æ H0(X; A)
induced by a continuous function pt æ X is an isomorphism for any A.

Remark 8.3.4. The term “has the zeroth homology” of a point should more
accurately be stated “canonically has the zeroth homology” of a point. This
is because we do not remember some abstract fact about H0(X; A) being
isomorphic to H0(pt; A) – instead, we remember the actual isomorphism.

Let’s see some examples.
2
See Remark 8.3.2
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Proposition 8.3.5. If X is homotopy equivalent to a point, then X has the
zeroth homology of a point.

Proof. First let us show X is path connected. Because X is homotopy equiv-
alent to a point, we know that there exist continuous functions a : pt æ X

and X æ pt (this latter map is unique!) and a homotopy

H : X ◊ [0, 1] æ X

such that H(x, 0) = x and H(x, 1) = a.
In particular, H(x, ≠) : [0, 1] æ X defines a continuous path from x to a.
So choose two points x0, x1 œ X. Then H(x0, ≠) is a path “0 from x0 to

a, and H(x1, ≠) is a path from x1 to a. By reversing time – i.e., with the
map [0, 1] æ [0, 1] taking t ‘æ 1 ≠ t – the latter path becomes a path “1 from
a to x1.

By concatenating the two paths we obtain a path

“ : [0, 1] æ X, t ‘æ

Y
]

[
“0(2t) t œ [0, 1/2]
“1(2t ≠ 1) t œ [1/2, 1]

from x0 to x1. So X is path-connected.
Considering the same function a : pt æ X as above, we know by ho-

motopy invariance of homology that aú is an isomorphism on all homology
groups, and in particular, on H0. We have proven that X has the zeroth
homology of a point.

Example 8.3.6. Choose an integer n Ø 0. We know that Rn is homotopy
equivalent to a point. Thus, Rn has the zeroth homology of a point by
Proposition 8.3.5.

Is this really a new example? Only in the attention we pay to it.
We already knew that if X is homotopy equivalent to a point, then all

homology groups of X are isomorphic to those of a point. Proposition 8.3.5
is paying attention to the fact that X is in fact path-connected, and thus
that any map from a point induces the desired isomorphism on homology.

Our goal is now to prove that many spaces have the zeroth homology of
a point. The following will be useful to know:

Proposition 8.3.7. Suppose that X can be written as a union of two subsets
U and V such that (i) U fi V = X, (ii) U fl V is non-empty, and (iii) U and
V are each path-connected. That X is path-connected.
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Proof. Given two points x0, x1 œ X, if they are both contained in U it is
obvious there is a continuous path between them (because U is assumed
path-connected). Likewise if x0, x1 are both contained in V .

So assume without loss of generality that x0 is contained in U , and x1
is contained in X \ U (which is a subset of V by (i)). Choose y œ U fl V

(which we may, thanks to (ii)). Because U is path-connected, there exists
a continuous path from x0 to y. Because V is path-connected, there exists
a continuous path from y to x1. Concatenating these two paths, we see a
continuous path from x0 to x1. This proves X is path-connected.

8.3.1 Warm-up case
Proposition 8.3.8. Suppose that X can be written as a union of two open
sets U and V such that U, V, and U fl V all have the zeroth homology of a
point (Definition 8.3.3).

Then X has the zeroth homology of a point.

Remark 8.3.9. Proposition 8.3.8 is very useful. So is its proof. In fact,
you may also want to remember the conclusion of Remark 8.3.11 below: It
identifies the j0 map in Mayer-Vietoris with the diagonal map.

Note we already know that X is path-connected by Proposition 8.3.7, so
we must only understand the map on H0 induced by an(y) inclusion of a
point.

The 0th row of the Mayer-Vietoris sequence is:

H0(U fl V ) j0
// H0(U) ü H0(V ) i0

// H0(X)

Goal: I want to very carefully understand the map j0.

Notation 8.3.10. So choose some element of UflV ; that is, choose a function

a : pt æ U fl V.

Note that a is unique up to homotopy because we assumed U fl V is path-
connected in this warm-up.

As usual, we have the two inclusions

jU : U fl V æ U, jV : U fl V æ V
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in the set-up of Mayer-Vietoris. Let us define

aU = jU ¶ a, aV = jV ¶ a. (8.3.1.1)

It is a good exercise to make sure you understand what the maps in (8.3.1.1)
are. Each simply picks out a point of U and of V , respectively.

That’s the topology.
Onto the algebra.

Remark 8.3.11 (Change of basis). Because we assumed that U and V and
U fl V have the zeroth homology of a point (Definition 8.3.3), the maps aú,
(aU)ú and (aV )ú are all isomorphisms.

Changing basis using these isomorphisms, we can transfer the information
of j0 to a map between the zeroth homology of points. Concretely, consider
the following commutative diagram of abelian groups:

H0(U fl V ) ((jU )ú,(jV )ú)
// H0(U) ü H0(V )

(aU )≠1
ú ü(aV )≠1

ú
✏✏

H0(pt)

aú

OO

// H0(pt) ü H0(pt).

The bottom horizontal arrow is computed as the composition of the other
arrows. By matrix composition, we find that the bottom horizontal arrow
equals A

(aU)≠1
ú 0

0 (aV )≠1
ú

B A
(aU)ú
(aV )ú

B

=
A

idH0(pt)
idH0(pt)

B

.

In other words, after changing basis to H0(pt; A), we see that the j0 map in
Mayer-Vietoris (given our particular hypotheses on U and V ) is the diagonal
embedding of H0(pt; A) into H0(pt; A) ü H0(pt; A) – i.e., the map sends

x ‘æ (x, x).

We are almost done.
As usual in the zeroth row of the Mayer-Vietoris sequence

H0(U fl V ) ((jU )ú,(jV )ú)
// H0(U) ü H0(V ) (iU )ú≠(iV )ú

// H0(X) // 0 (8.3.1.2)
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we see that i0 = (iU)ú ≠ (iV )ú is a surjection by exactness at H0(X). By the
first isomorphism theorem, the map induced by i0

(H0(U) ü H0(V )) / im(j0) æ H0(X), [(y, y
Õ)] ‘æ (iU)ú(y) ≠ (iV )ú(yÕ).

is an isomorphism. By Remark 8.3.11, we know there is an isomorphism

(H0(pt) ü H0(pt)) /� æ (H0(U) ü H0(V )) / im(j0), [(x, x
Õ)] ‘æ [((aU)ú(x), (aV )ú(xÕ))].

Composing the above two isomorphisms, we conclude that the map

(H0(pt) ü H0(pt)) /� æ H0(X) [(x, x
Õ)] ‘æ (iU)ú(aU)ú(x)≠(iV )ú(aV )ú(xÕ)

(8.3.1.3)
is an isomorphism. On the other hand, for any abelian group K, the map

K æ (K ü K)/�, x ‘æ [(x, 0)] (8.3.1.4)

is an isomorphism (Exercise 8.2.1). Thus the composition of (8.3.1.3) and (8.3.1.4)
for K = H0(pt) is an isomorphism, and can be computed as

H0(pt) æ H0(X), x ‘æ (iU)ú(aU)ú(x).

But (aU)ú was defined as a pushforward map, so this isomorphism can be
rewritten as

x ‘æ (iU)ú(aU)ú(x)
= (iU)ú(jU ¶ a)ú(x)
= (iU ¶ jU ¶ a)ú(x).

In other words, this isomorphism from H0(pt) to H0(X) is the induced map
on homology of a continuous map pt æ X given by iU ¶ jU ¶ a.

Because X is path-connected, this means that any map pt æ X induces
an isomorphism on H0. This proves that X has the zeroth homology of a
point, as desired.

8.3.2 When U fl V has two components
The following situation arises when we cover X = S

1 by two large open
intervals. See Figure 8.4.1.
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Proposition 8.3.12. Suppose that X can be written as a union of two open
sets U and V such that U and V have the zeroth homology of a point, and
U fl V is non-empty. Further assume that U fl V is a disjoint union of two
spaces each having the zeroth homology of a point (Definition 8.3.3).

Then X has the zeroth homology of a point.

Remark 8.3.13. Compare Proposition 8.3.8 to Proposition 8.3.12. You
clearly want to generalize to when U fl V has many components. This is
possible, and is left for you as Exercise 8.6.7.

We only need the case of up to two connected components in U fl V –
Proposition 8.3.12 – to get our feet o� the ground (namely, to compute the
homology of a circle).

Remark 8.3.14. As before, it will be useful to study this proof, especially
Remark 8.3.17. Knowing an explicit expression for the map j0 in the Mayer-
Vietoris sequence (up to change of basis) will pay dividends.

Notation 8.3.15. We have assumed that U fl V is a disjoint union of two
spaces with the zeroth homology of a point. Let’s accordingly write

U fl V = W1
·

W2

where each Wi has the homology of a point. Choose a point in each Wi:

a1 : pt æ W1, a2 : pt æ W2,

Each of these ai induces an isomorphism (ai)ú : H0(pt) æ H0(Wi) by the
assumption that Wi has the zeroth homology of a point.

We have inclusions

k1 : W1 æ U fl V, k2 : W2 æ U fl V,

and
jU : U fl V æ U, jV : U fl V æ V.

We finally let

a1,U = jU ¶ k1 ¶ a1, a2,V = jV ¶ k2 ¶ a2.

Remark 8.3.16 (Changing basis, again). Let us again take the abstract
map j0 and re-write it in a basis we understand – i.e., as a map between
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(direct sums of) the zeroth homology of a point. We can make a commuting
diagram

H0(U fl V ) j0
// H0(U) ü H0(V )

≥= ((a1,U )≠1
ú ,(a2,V )≠1

ú )

✏✏

H0(W1) ü H0(W2)

≥=((k1)ú≠(k2)ú)
OO

H0(pt) ü H0(pt)

(a1)úü(a2)ú ≥=

OO

// H0(pt) ü H0(pt)

(8.3.2.1)

by declaring the bottom horizontal arrow to be the composition of the other
arrows.

Remark 8.3.17. Let us now compute the bottom horizontal arrow. We
perform the following matrix multiplication:

A
(a1,U)≠1

ú 0
0 (a2,V )≠1

ú

B A
(jU)ú
(jV )ú

B 1
(k1)ú ≠(k2)ú

2 A
(a1)ú 0

0 (a2)ú

B

=
A

(a1,U)≠1
ú 0

0 (a2,V )≠1
ú

B A
(jU)ú
(jV )ú

B 1
(k1 ¶ a1)ú ≠(k2 ¶ a2)ú

2

=
A

(a1,U)≠1
ú 0

0 (a2,V )≠1
ú

B A
(jU ¶ k1 ¶ a1)ú ≠(jU ¶ k2 ¶ a2)ú
(jV ¶ k1 ¶ a1)ú ≠(jV ¶ k2 ¶ a2)ú

B

.

The matrix on the right looks like a doozy, but let us make two observations.
First, jU ¶ k2 ¶ a2 – which picks out a point of U – is a continuous map that
is homotopic to jU ¶ k1 ¶ a1. This is because U is assumed path-connected.
Likewise, we have

jV ¶ k1 ¶ a1 ≥ jV ¶ k2 ¶ a2

because V is path-connected. We conclude:

(jV ¶ k1 ¶ a1)ú = (jV ¶ k2 ¶ a2)ú, (jU ¶ k1 ¶ a1)ú = (jU ¶ k2 ¶ a2)ú.

Noting the definitions of a1,U and a1,V , we may continue our matrix multi-
plication computation as follows:

=
A

(a1,U)≠1
ú 0

0 (a2,V )≠1
ú

B A
(a1,U)ú ≠(a1,U)ú
(a2,V )ú ≠(a2,V )ú

B

=
A

idH0(pt) ≠ idH0(pt)
idH0(pt) ≠ idH0(pt)

B

.
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Explicitly, we have found that the bottom horizontal arrow in (8.3.2.1) is the
homomorphism sending

(x, y) ‘æ (x ≠ y, x ≠ y). (8.3.2.2)

Example 8.3.18. If A = Z and we fix an isomorphism H0(pt;Z) ≥= Z, then
the matrix above can be rewritten as a matrix of integers as follows:

A
1 ≠1
1 ≠1

B

.

The rest of the proof of Proposition 8.3.12. The top row in the diagram be-
low is the 0th row of the Mayer-Vietoris sequence:

H0(U fl V ) j0
// H0(U) ü H0(V ) i0

// H0(X) // 0

H0(pt) ü H0(pt)

≥=

OO

(8.3.2.2)
// H0(pt) ü H0(pt)

–

99

≥=((a1,U )ú,(a2,V )ú)

OO

The upward-rightward arrow – is define to be the composition of the other
two maps in the triangle. By exactness, we know that i0 is a surjection.
So by the first isomorphism theorem, we know that H0(X) is isomorphic
to H0(U) ü H0(V )/ ker(i0). By exactness, ker(i0) = im(j0). Because the
vertical arrows are isomorphisms, we conclude that the upward-rightward
map – above induces an isomorphism

(H0(pt) ü H0(pt))/ im((8.3.2.2)) æ H0(X).

Concretely (by definition of – and i0) this map acts by

[(x, y)] ‘æ (iU ¶ a1,U)ú(x) ≠ (iV ¶ a2,V )ú(y).

Let us now consider the composition

H0(pt) æ (H0(pt) ü H0(pt))/ im((8.3.2.2)) æ H0(X)

where the first arrow sends an element x to [(x, 0)]. Because the image of
(8.3.2.2) is the diagonal, we know the first arrow is an isomorphism (Exer-
cise 8.2.1). Because we just saw that the second arrow is an isomorphism,
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the above composition is an isomorphism. Moreover, parsing the formulas,
the composition is precisely

x ‘æ (iU ¶ a1,U)ú(x).

That is, it is the map on 0th homology induced by the continuous function
iU ¶ a1,U : pt æ X.

This shows that the map from a(ny) point to X induces an isomorphism
on H0, and proves the proposition.

8.4 Homology of the circle

Re-written as of February 22
Let U = {(x0, x1) œ S

1 | x1 < 1} and V = {(x0, x1) œ S
1 | x1 > ≠1}. Note

that U fl V consists of two disjoint open intervals of S
1. See Figure 8.4.1 for

some visualizations.
Note that U ≥= V ≥= R, and U fl V ≥= R‡R. Because R is homo-

topy equivalent to a point, everything in sight has the zeroth homology of a
point (Example 8.3.6). So we may apply Proposition 8.3.12 to conclude that
H0(S1) ≥= H0(pt). By 5.4.1, we thus see

H0(S1) ≥= A.

In Row 0 of the Mayer-Vietoris sequence, we have the map

H0(U fl V ) j0≠æ H0(U) ü H0(V ). (8.4.0.1)

By Remark 8.3.17, we know j0 (after a change of basis) is the map (8.3.2.2),
which we reproduce here for the reader’s convenience:

H0(pt) ü H0(pt) æ H0(pt) ü H0(pt), (x, y) ‘æ (x ≠ y, x ≠ y).

So we have
ker((8.3.2.2)) = � = {(x, y) | x = y}.
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(a) (b) (c)

(d) (e)

a1

a2

Figure 8.4.1. (a) depicts the open subset U . (b) is the open subset V . (c)
is the circle S

1. (d) is the intersection U fl V . (e) is a redrawing of U fl V

to emphasize that U fl V is a disjoint union of two open intervals. In the
main text, W1 is the name given to the lefthand component, while W2 is the
righthand component.
The bottom of this figure depicts two continuous functions from two di�erent
points: a1 is a map from a point picking out one connected component of
U fl V , while a2 is a function from a point picking out the other connected
component.
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With this preparation, let us now study the Mayer-Vietoris sequence:
... //

... //

...

ss

H2(U fl V ) // H2(U) ü H2(V ) // H2(S1)

rr

H1(U fl V ) // H1(U) ü H1(V ) // H1(S1)

rr

H0(U fl V ) // H0(U) ü H0(V ) // H0(S1) æ 0

We note that U fl V ƒ pt
‡

pt and U ƒ pt, V ƒ pt, so3 all the homology
groups of the middle and lefthand columns vanish for n Ø 1:

... //

... //

...

ss0 // 0 // H2(S1)

rr0 // 0 // H1(S1)

rr

H0(U fl V )
j0
// H0(U) ü H0(V ) // H0(S1) æ 0

We thus4 conclude that

Hn(S1) ≥= 0 for all n Ø 2.

We also know by Proposition 8.3.12

H0(S1) ≥= H0(pt) ≥= A.

. So it remains to compute H1(S1). By exactness, we know that the con-
necting homomorphism H1(S1) æ H0(U fl V ) is an injection5 So H1(S1) is

3
This is because we know Hn(pt) and we know Hn(pt

‡
pt) ƒ Hn(pt) ü Hn(pt).

4
See Remark 7.4.1.

5
The kernel of the connecting map, by exactness, equals the image of the previous map.

And the previous map is the zero map, so has trivial image.
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isomorphic to the image of the connecting homomorphism. On the other
hand, by exactness, this image is equal to the kernel of j0, which we have al-
ready computed to be a group isomorphic to the diagonal of H0(pt)üH0(pt).
But of course the diagonal is isomorphic to H0(pt), so we conclude that
H1(S1) ≥= H0(pt) ≥= A.

8.5 Trees
First, recall that a tree is a non-empty, connected graph with no cycles.
For our purposes, a tree is also a topological space – interiors of edges are
topologized to be homeomorphic to R, for example.

Theorem 8.5.1. Any tree is homotopy equivalent to a point.

Proof sketch. The proof depends very much on your definition of “tree.”
Some definitions make this proof a major theorem, while others make it
rather trivial.

Regardless of your definition of tree, the following fact is true: Given any
two points u, v of the tree T , there exists a unique (up to parametrization)
continuous path “u,v : [0, 1] æ T with “(0) = u and “(1) = v. Fix u. The
“u,v can be chosen to depend continuously on the choice of v, so we have a
continuous function

T ◊ [0, 1] æ T, (v, t) ‘æ “u,v(t)

which at t = 0 is the constant map with image u, and at t = 1 is the identity.
This homotopy can be used to show that the inclusion pt æ T , sending the
point to u, is a homotopy equivalence.

Remark 8.5.2. This theorem is even more subtle than it looks. For example,
I never postulated that T is a finite tree. We don’t want to spend all day
topologizing a tree with infinitely many vertices and edges in the “correct”
way, and we also won’t deal with infinitely large trees in our course, so we
will ignore this point.

Exercise 8.5.3. Let T be a tree. Compute the homology groups of T . (Use
Theorem 8.5.1.)
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8.6 Exercises
Exercise 8.6.1. Show that for A = Z or A = F2„ the homology groups of
the figure 8 graph are given as follows:

Hn(8; A) ≥=

Y
__]

__[

A n = 0
A ü A n = 1
0 n Ø 2.

As a hint, you will want to use Mayer-Vietoris, Exercise 8.5.3, Exercise 8.2.1,
Exercise 8.6.5, and the first isomorphism theorem.

(This exercise is true regardless of choice of A, but we take A = Z and
A = F2 for concreteness.)

Figure 8.6.2. A chain of five circles.

Figure 8.6.3. A bouquet of six circles.

Exercise 8.6.4. Let X be a chain of k circles, or a bouquet of k circles. (See
Figures 8.6.2 and 8.6.3 for what I mean.) Show that

Hn(X; A) ≥=

Y
__]

__[

A n = 0
A

ük
n = 1

0 n Ø 2.
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Exercise 8.6.5. Suppose X is a topological space with H0(X;Z) ≥= Z. Prove
that for any x œ X, the continuous function

f : pt æ X

sending the point to x induces an isomorphism on H0(X;Z).
Prove the same with F2 coe�cients.
Hint: The constant map p : X æ pt is continuous, and of course p ¶ f =

idpt. The induced map fú is thus an injection on H0, while pú is a surjection
on H0. On the other hand X æ pt æ X squares to itself; so (fp)ú is a
projection operator A æ A with image isomorphic to A. The only such
projection operators for A = Z and A = F2 are the identity.

Remark 8.6.6. When one gives a concrete model for homology, Exercise 8.6.5
is much simpler to establish. However, the trickiness of the above exercise is
a hint that the axiomatics leave room for much more general kinds of homol-
ogy theories. Indeed, there are extraordinary homology theories out there
that do not simply arise from coe�cient groups A – these are sometimes
called spectra, or stable homotopy types.

Exercise 8.6.7. Prove the following generalization of Proposition 8.3.12:
Suppose that X can be written as a union of two open sets U and V such

that U and V have the zeroth homology of a point, and U fl V is non-empty.
Further assume that U fl V is a finite disjoint union of spaces each having
the zeroth homology of a point (Definition 8.3.3).

Then X has the zeroth homology of a point.


