Class Notes 2/12/24

Deft: A sequence of Abelian ge homomorphisms curl anon
implies injection

$$
\ldots A_{i+1} \xrightarrow{f_{i+1}} A_{i} \xrightarrow{f_{i}} A_{i-1} \xrightarrow{f_{i-1}} A_{i-2} \rightarrow
$$

is called exact if $\forall i$, $\operatorname{ker}\left(F_{i}\right)=$ image $\left(f_{i f} 1\right)$

- An exact sequence

15. called a short exact sequence

- Achy other exact sequence iscalled long. (typically longer than three temps,
Recall $1^{\text {It }}$ ISOMORPHISM THEOREM:
Given $f: G \rightarrow H, G / \operatorname{ker}(f) \cong \operatorname{image}(f)$
Applying it to mapping above, we get:

$$
\begin{aligned}
B / \operatorname{her}(g) & \simeq \operatorname{image}(f) \quad C \\
\operatorname{lm}(f) & C \\
B / A & \cong C
\end{aligned}
$$

Prop: If:

$$
\text { then } \xrightarrow{\text { It }} \underset{i}{f_{i+1}} A \xrightarrow{f_{i}} B \xrightarrow{f_{i-1}} 0
$$

Proof:
By exactness at A, her $(f)=1$ mage $(0 \rightarrow A)$

$$
=\left\{0_{n}\right\}
$$

- If the kernel is trivial, f is an injection. \checkmark
- By exactness at B,

$$
B=\operatorname{ker}(B \rightarrow 0)=\operatorname{lmage}(f)
$$

Then f is a surjection.
Hence, f is an isomorphism.

The: (last time), there exist these blue arrows δ, s.t. the sequence is exact.

Example: $\quad X=U \Perp V$ as a space

$$
\begin{aligned}
& \left.H_{2}(\phi) \rightarrow H_{2}(u) \oplus H_{2}(v) \rightarrow H_{2}(x)\right] \\
& \left.\rightarrow H_{1}(\phi) \rightarrow H_{1}(u) \oplus H_{\delta}(v) \rightarrow H_{1}(x)\right] \\
& \rightarrow H_{0}(\phi) \rightarrow H_{0}(u) \oplus H_{0}(v) \rightarrow H_{0}(x) \rightarrow 0
\end{aligned}
$$

The homology of the empty set is 0 for all n, Hence:

$$
\begin{align*}
& \mathrm{H}_{2}(\stackrel{\mathrm{O}}{\phi}) \longrightarrow H_{2}(u) \oplus H_{2}(v) \stackrel{\cong}{\cong} H_{2}(x) \\
& \stackrel{0}{\mathrm{H}+\phi} \rightarrow H_{1}(u) \oplus H_{1}(v) \cong H_{1}(x) \\
& \left.\rightarrow \mathrm{H}_{2} \mathrm{O}^{\mathrm{C}} \phi\right) \rightarrow H_{0}(u) \oplus H_{0}(v) \stackrel{\cong}{\rightrightarrows} H_{0}(x)
\end{align*}
$$

So, These
$(+\operatorname{Hn}(V)$
$\uparrow_{\text {isomorphisms by Prop above. }}$
So $H_{n}(X) \cong H_{n}(U) \oplus H_{n}(V)$ any disjoint disjoint dis

Question: What dues $A \oplus A / \triangle$ mean?
Fix an Abelian group

$$
A \oplus A=\left\{\left(a_{1}, a_{2}\right) \mid a_{1}, a_{2} \in A\right\}
$$

where $\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}\right)$
Notation:

$$
\Delta_{i}=\{(a, a) \mid a \in A)
$$

diagonal same values

$$
=\left\{\left(a_{1}, a_{2}\right) \mid a_{1}=a_{2}\right\} \subset A \oplus A
$$

Example (of $A \oplus A / \Delta$) for $A=\mathbb{Z} / 4 \pi$

$$
\left[\left(a_{1}, a_{2}\right)\right] \in A \oplus A / \Delta
$$

eg. $[(0,0)] \quad[(1,1)] \quad[(2,3)] \quad[(1,2)] \quad[(1,3)] \quad[(0,2)]$

$$
\left[\left(a_{1}, a_{2}\right)\right]=\left[\left(b_{1}, b_{2}\right)\right] \Leftrightarrow \exists c \text { s.女. }\left(a, a_{2}\right)+(c, c)=\left(b_{1}, b_{2}\right)
$$

So These are the same 'bc you could add $(1,1)$ to $(1,2)$ and get $(2,3)$

On the reading, we need to show that

$$
\left[\left(a_{1}, a_{2}\right)\right] \in A \oplus A / \Delta \xrightarrow{\cong} A
$$

Question: Why is $\bar{\Delta}$ called an antidiagonal?
$[(2,3)]$ and $[(1,2)]$ are not related antidiogpally
but $[(, 2,1)]$ and $[(1,2)]$ are related antidiegmally

Today: let's compute the homology of a circle.

$$
H_{*}\left(S^{\prime}\right)^{\top}
$$

We start the M.V. sequence by choosing an $U \vdots V$

$$
\begin{aligned}
& U=\left\{\left(x_{1}, x_{2}\right) \in S^{\prime} \mid x_{1}>-1\right\} \\
& V=\left\{\left(x, x_{2}\right) \in S^{\prime} \mid x_{1}<1\right\}
\end{aligned}
$$

$$
\begin{aligned}
& U=\sigma \stackrel{\pi}{\cong} \mathbb{R}^{\prime} \cong(\cong=V \\
& \text { we } \stackrel{\text { also }}{\text { know }} \mathbb{R}^{\prime} \cong *
\end{aligned}
$$

Hence, $S^{n-1} \backslash\{x\} \rightarrow P \cong \mathbb{R}^{n-1}$

$$
y \longmapsto \pi(y)=P \cap \operatorname{line}_{\substack{\text { thanh }}}
$$ through

x, y
The. We can take for granted: π is a homeomorphism
(If two spaces are homeomorphic, then their homology groups are isomorphic)

Now, onto the M.V. Sequence

$$
\begin{aligned}
& H_{2}(u \cap v) \rightarrow H_{2}(u) \oplus H_{\delta}(v) \rightarrow H_{2}(x) \square \\
& \rightarrow H_{1}(u \cap v) \rightarrow H_{1}(u) \oplus H_{\delta}(v) \rightarrow H_{1}(x) \square \\
& \rightarrow H_{0}(u \cap v) \rightarrow H_{0}(u) \oplus H_{0}(v) \rightarrow H_{0}(x) \rightarrow 0
\end{aligned}
$$

Do we know the homology groups of U ? Well we know the homology groups of \mathbb{R}

Recall:

$$
H_{n}(p t)=\left\{\begin{array}{l}
A \\
0
\end{array}\right.
$$

if $n=0$
elsewhere

Hence, since $\operatorname{ker}(f)=\operatorname{Im}\left(f_{i+1}\right)$, so

$$
\begin{aligned}
& \begin{array}{lll}
H_{2}(u \cap v) \rightarrow & 0 & \rightarrow H_{2}\left(S^{\prime}\right) \\
H_{8}(u \cap v) \rightarrow & 0 & \rightarrow H_{1}\left(S^{\prime}\right) \\
\\
H_{1}(u \cap v) \rightarrow A & A \oplus A & H_{0}\left(S^{\prime}\right) \longrightarrow 0
\end{array} \\
& u \cap v=\oint \cong \mathbb{R} \Perp \mathbb{R}
\end{aligned}
$$

But $\mathbb{R} \Perp \mathbb{R} \cong$ pt \Perp pt
So, now

Cleaning this up:

So the image of f must equal 0 .
And hance the hemal of δ most equal $\operatorname{lm}(f)=0$

$$
H_{2}\left(S^{\prime}\right)=0
$$

Whatever this map is, it'll look like $\left(\begin{array}{ll}1 & \pm 1 \\ 1 & \pm 1\end{array}\right)$ So this will either look line the diagonal or antidiagonal. so $H_{0}\left(S^{\prime}\right)=A$

