
Reading 7

Mayer-Vietoris and long exact
sequences

We are gathering tools to compute homology. We will take for granted the
homology of a point:

Hn(pt; A) ≥=

Y
]

[
A n = 0
0 otherwise.

(7.0.0.1)

Last time we saw that homotopy equivalences are powerful weapons. If
two spaces are homotopy equivalent, their homology groups are isomorphic.
This allowed us to compute the homology groups of Euclidean space of any
dimension k:

Hn(Rk; A) ≥=

Y
]

[
A n = 0
0 otherwise.

Today we will see that homology also satisfies a “local-to-global” property:
By computing homology on bits and pieces of a space, we have hope of
computing the homology of the whole space.

Notation 7.0.1. It is common to suppress the coe�cient group A from
homology notation, meaning we use the shortened notation

Hn(X)

to mean Hn(X; A). In other words, we will often leave A “implicit” in the
notation.
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7.1 Natural maps from a two-set cover

Suppose that U and V are two (not necessarily open) subsets of X. By the
definition of subspace topology, inclusions of subspaces are continuous. So
we have several continuous maps arising from U and V :

iU : U æ X,

iV : V æ X,

jU : U fl V æ U,

jV : U fl V æ V.

So for all n, we have induced maps on homology

(iU)ú : Hn(U) æ Hn(X),
(iV )ú : Hn(V ) æ Hn(X),

(jU)ú : Hn(U fl V ) æ Hn(U),
(jV )ú : Hn(U fl V ) æ Hn(V ).

For reasons that only become clear with experience, I want to consider the
composition

Hn(U fl V ) // Hn(U) ü Hn(V ) // Hn(X) (7.1.0.1)

where the first arrow is given by

Hn(U fl V ) æ Hn(U) ü Hn(V ), x ‘æ ((jU)ú(x), (jV )ú(x))

and the second arrow is given by

Hn(U) ü Hn(V ) æ Hn(X), (a, b) ‘æ (iU)ú(a) ≠ (iV )ú(b). (7.1.0.2)

Remark 7.1.1. Perhaps the most perplexing part of the above maps is the
minus sign in (7.1.0.2). The idea is to make sure that the contribution from
U fl V cancels inside X. Indeed, the composition iU ¶ jU is equal to the
composition iV ¶ jV , so the minus sign guarantees that the composition of
the two arrows in (7.1.0.1) is zero.
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7.2 Homology of the empty set
So far I’ve only “told” you the homology of one space: The point. From this
and invariance under homotopy equivalence, we could compute the homology
of Euclidean space.

Today let me just tell you one more fact:

Fact 7.2.1. The empty set has zero homology groups in every degree.

That is, for every A and every n Ø 0,

Hn(ÿ; A) ≥= 0. (7.2.0.1)

.

7.3 The Mayer-Vietoris sequence
Theorem 7.3.1. Fix a topological space X. Let U and V be open subsets
of X such that U fi V = X. Then for any coe�cient group A, there exist
diagonal maps as below:

. . . // Hn+1(X)

rr
Hn(U fl V ) // Hn(U) ü Hn(V ) // Hn(X)

rr
Hn≠1(U fl V ) // Hn≠1(U) ü Hn≠1(V ) // Hn≠1(X)

rr... //
... //

...

rr
H1(U fl V ) // H1(U) ü H1(V ) // H1(X)

rr
H0(U fl V ) // H0(U) ü H0(V ) // H0(X) æ 0

such that, when the horizontal arrows are as in (7.1.0.1), the kernel of each
map is the image of the previous map.
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The sequence in Theorem 7.3.1 is called the Mayer-Vietoris sequence as-
sociated to the choice of U and V .

The diagonal arrows, which have domain and codomain as follows:

Hn(X; A) æ Hn≠1(U fl V ; A),

are often called the connecting homomorphisms or the boundary homomor-
phisms.

7.3.1 Details for parsing the Mayer-Vietoris sequence
Remark 7.3.2. In the sequence of groups above, we witness the homology
groups of U , V , and UflV . Each of these U, V, UflV is treated as a topological
space (via the subspace topology inherited from X) so it makes sense to ask
for their homology groups.

Remark 7.3.3. There is a version of Mayer-Vietoris where we may relax
the hypothesis: Rather than U and V being open in X, we may ask that the
interiors of U and of V cover X. We will not need this version in this class.

For whatever reason, sequences of group homomorphisms where the image
of each map equals the kernel of the next arises – a lot – in math. So we give
such a sequence of maps an adjective: exact.

Definition 7.3.4. Let A
f≠æ B

g≠æ C be two group homomorphisms. We say
this collection of homomorphisms is exact at B if ker g = im(f). (That is, if
the kernel of g is the image of f .)

More generally, given a sequence of group homomorphisms with the do-
main of each homomorphism matching the codomain of the previous homo-
morphism, we say the sequence is an exact sequence if the kernel of every
map is the image of the previous map.

Example 7.3.5. The Mayer-Vietoris sequence is an exact sequence of maps.

7.4 Example: Disjoint union of two points
We begin with perhaps the simplest example.
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Suppose that X can be written as a union of two open subsets that do
not intersect. An example is when X = pt

‡
pt ≥= {a, b} is a disjoint union of

two points. Then the subsets {a} and {b} are both open subsets of X.1 Set

U = {a}, V = {b}.

Note that U ≥= V ≥= pt, so we know the homologies of these sets. Note also
that U fl V = ÿ, so the Mayer-Vietoris sequence becomes the following:

. . . // Hn+1(pt
‡

pt)

rr
Hn(ÿ) // Hn(pt) ü Hn(pt) // Hn(pt

‡
pt)

rr
Hn≠1(ÿ) // Hn≠1(pt) ü Hn≠1(pt) // Hn≠1(pt

‡
pt)

rr... //
... //

...

rr
H1(ÿ) // H1(pt) ü H1(pt) // H1(pt

‡
pt)

rr
H0(ÿ) // H0(pt) ü H0(pt) // H0(pt

‡
pt) æ 0

Now let us plug in what we know about the homology of the empty set (7.2.0.1)
and the point (7.0.0.1), with say A = F2 coe�cients:

1
There exists a topology on {a, b} for which this statement is not true! Indeed, the

disjoint union forces X to have the discrete topology, where every subset is open.
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. . . // Hn+1(pt
‡

pt)

tt0 // 0 // Hn(pt
‡

pt)

tt0 // 0 // Hn≠1(pt
‡

pt)

tt... //
... //

...

tt0 // 0 // H1(pt
‡

pt)

tt0 // F2‘ ü F2 // H0(pt
‡

pt) æ 0
Now we shall use the most important property of the Mayer-Vietoris se-
quence: It is exact. We don’t even need to know exactly what the diagonal
maps are in this example! Indeed, let use understand what it means for the
following part of the sequence to be exact:

0 jú // F2 ü F2
(iU )ú≠(iV )ú // H0(pt

‡
pt) // 0

where the last arrow is the boundary/connecting homomorphism. (We do
not draw it diagonally, for sake of space.)

The sequence is exact at H0(pt
‡

pt), which means that the kernel of the
last map is the image of the previous map. Well, the last map is the zero map!
So all of H0(pt

‡
pt) is the kernel. By exactness, the image if (iU)ú ≠ (iV )ú

must therefore be all of H0(pt
‡

pt). We conclude that the middle arrow
must be a surjection.

The sequence is exact at F2 üF2. This means the image of jú is the kernel
of the middle arrow. Well, jú is the zero map! So its image is trivial. (Its
image consists only of 0 œ F2 ü F2.) This means the kernel of the middle
arrow is trivial, which means that the middle arrow is an injection.

We conclude that the middle arrow is a bijection.
So, we have proven the following:

H0(pt
·

pt) ≥= F2 ü F2.
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How about for n Ø 1? Well, we have that the following portion of the
Mayer-Vietoris sequence is exact:

0 // Hn(pt
‡

pt)

uu0.

(7.4.0.1)

The image of the horizontal arrow is zero, of course; so (by exactness) the
diagonal arrow has trivial kernel, meaning the diagonal arrow must be an in-
jection. But if Hn(pt

‡
pt) admits an injection to the zero group, Hn(pt

‡
pt)

must be (isomorphic to) the zero group.

Remark 7.4.1. The reasoning around (7.4.0.1) happens often. If you have
an exact sequence

0 æ A æ 0
then A must be (isomorphic to) the zero group.

7.5 Example: Disjoint union of spaces
Exercise 7.5.1. (a) Suppose X and Y are topological spaces. Let X

‡
Y

be the disjoint union (as a set). We can endow X
‡

Y with the disjoint
union topology, where a subset U µ X

‡
Y is open if and only if both

U fl X and U fl Y are open (in the original topologies of X and Y ,
respectively).
If you have time, prove that this is indeed a topology on X

‡
Y . Even if

you do have time, it’s okay to skip this exercise.

(b) For every n and A, show that there exists an isomorphism

Hn(X; A) ü Hn(Y ; A) ≥= Hn(X
·

Y ; A)

induced by the inclusion maps X æ X
‡

Y and Y æ X
‡

Y .

(c) Suppose we have a finite collection of topological spaces X1, . . . , Xk and
let X = X1

‡
. . .

‡
Xk. Show that for all n and A, there is an isomor-

phism
Hn(X1; A) ü . . . ü Hn(Xk; A) ≥= Hn(X; A)

induced by the inclusion maps Xi æ X.
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Remark 7.5.2. It is in fact true that for any (possible infinite) collection
{Xi}iœI of spaces, we have

Hn(
·

iœI

Xi; A) ≥= üiœIHn(Xi; A).

This fact cannot be proven based on the axioms I’ve told you so far: It is a
new axiom of homology. However, we do not utilize it in this course, so I will
not make much mention of it (though it is very important if you proceed in
topology). When we see a model for homology toward the end of this course,
you can prove the above isomorphism directly.


