Homotopy (Equivalence)
Last time: Downloaded some properties of homology

- Think of n
(1) $\forall n \geq 0$, \forall abelian gp. A, in H_{n} as representing something in $n^{\text {th }}$ dimension

$$
\text { Spaces } \rightarrow \text { Abelian Groups }
$$

$$
X \longmapsto H_{n}(X ; A)
$$

"The $n^{\text {th }}$ homology group of X with coefficients in $A^{\prime \prime}$
When A is implicit, we often write $H_{n}(x)$ ie.
Ho captures something zero dimensional,
(a) $\forall f: x \rightarrow Y$ continuous, we have an "induced" homomorphism $f_{*}: H_{n}(X ; A) \rightarrow \ln (Y ; A)$
H_{1} captures
something
(3) $(g \circ f)_{*}=g_{*} \circ f_{*}$
l dimensional, That is, $H_{n}(-; A)$ is a functor. etc.
chomeomorphic

- Think about Proposition: If $X \cong Y$, then $\forall n \geq 0, \forall A$, homology groups as a cubist

Just take this fact for granted
Definition: Fix two continuous functions $f, g: x \rightarrow y$. A homotopy from f to g is a continuous function

$$
H: X \times[0,1] \rightarrow Y
$$

such that

$$
(x, t) \longmapsto H(x, t)
$$

$$
\begin{aligned}
& \text { At }(-, 0)=f \\
& H(-, 1)=g
\end{aligned}
$$

Example: $\quad X=S^{\prime}=\left\{x_{1}^{2}+x_{2}{ }^{2}=1\right\} \subset \mathbb{R}^{2}$

Example: $x=p t, Y=\mathbb{R}^{2}$

$$
\begin{aligned}
f: x & \rightarrow y \\
* & \rightarrow(2,3) \\
g: x & \rightarrow y \\
x & \rightarrow(-1,5)
\end{aligned}
$$

Define $H: X \times[0,1] \rightarrow Y$

$$
t \longmapsto(1-t) \cdot(2,3)+t \cdot(-1,5)
$$

At $t=0$, image of function is (2,3)
At $t=1$,
What happens in between? It's a straight line
Points move from f to g as time goes from 0 to 1
Given

$$
\begin{aligned}
& f_{1} g: x \rightarrow \mathbb{R}^{n} \\
& H(x, t):=(1-t) f(x)+\operatorname{tg}(x)
\end{aligned}
$$

Any two functions are homotopic if their codomain is \mathbb{R}^{n}

- We say f is homotopic to g if \exists a homotopy from f to g
- "Homotopicto" is an equivalence relation (on the set of continuous functions $x \rightarrow y$) (can try to show this as an exercise)
Do: 6.2.1

$$
6.2 .2
$$

$$
6.2 .3
$$

\rightarrow Continuity - proving continuous using defn's can be tedious here
Cheat: Anything with a formula is probably cts.
sums, products, composition of functions is cts.

$$
\left(t^{3}, \cos t \sin t\right) \longleftrightarrow t
$$

Projections
Check projections
Universal property of product spaces

What about when you donit have products?

$$
X \times[0,1] \stackrel{\times \sim p t}{\cong}[0,1] \rightarrow \mathbb{R}
$$

$$
f \downarrow<\tilde{f}
$$

Unless you have invented a new topological space, you wont usually prove continuity from the definition \rightarrow use universal properties
Example: $f: \mathbb{R}^{2} \backslash\{0\} \xrightarrow{\text { id }} \mathbb{R}^{2} \backslash\{0\}$

$$
\left(x_{1}, x_{2}\right) \longmapsto\left(x_{1}, x_{2}\right)
$$

$g: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}^{2} \backslash\{0\}$
$\left(x_{1}, x_{2}\right) \longmapsto \frac{\left(x_{1}, x_{2}\right)}{\sqrt{x_{1}^{2}+x_{2}^{2}}} \quad \begin{aligned} & \text { (vector scaled by its } \\ & \text { length }=\text { unit vector) }\end{aligned}$
Image is S^{\prime}
Homotopy will take plane and shrink to circle
Define $H:\left(\mathbb{R}^{2} \backslash\{0\}\right) \times[0,1] \rightarrow \mathbb{R}^{2} \backslash\{0\}$

$$
\left(\left(x_{1}, x_{2}\right), t\right) \mapsto(1-t)\left(x_{1}, x_{2}\right)+t \frac{\left(x_{1}, x_{2}\right)}{\sqrt{x_{1}^{2}+x_{2}^{2}}}
$$

This is the straight line homotopy we saw earlier Important that this one never crosses origin because dividing by length of vector

Image at all
times $t \neq 1$

Image at $t=1$.

Fact: If $f \stackrel{\kappa^{\text {homotopic (}} \text { (equivalence relation) }}{ }$
Abelian groups are not sensitive to "wiggles" You can ask if one function can wiggle into another one

Definition: A continuous function $f: X \rightarrow Y$ is called a homotopy equivalence if

$$
\begin{array}{ll}
\exists & \exists \\
\cdot & \text { Y }
\end{array}
$$

such that
of $\tilde{H} i d x$ and $f g \widetilde{q} i d y$
composition composition
If these are equalities and don't need
H, G, then we have a homeomorphism
When we need H and G, then they are
"equivalent up to homotopy"
chomotopy equivalent
Proposition: If $X \underset{\sim}{\mathbb{K}} y$, then $\forall n \geqq 0, \forall A$,

$$
H_{n}(\hat{X} ; A) \cong H_{n}(Y ; A)
$$

isomorphic
Example: $p t \simeq \mathbb{R}^{n} \quad(\forall n \geq 0)$

$$
\begin{array}{rll}
\text { Why? } & f: p_{t} \rightarrow \mathbb{R}^{n} & g: \mathbb{R}^{n} \rightarrow p^{*} \\
& x \mapsto * \\
& g f=i d_{p t} & f g \sim i d \mathbb{R}^{n} \\
& & \mathbb{R}^{h} \rightarrow \mathbb{R}^{n} \\
& x \mapsto 0
\end{array}
$$

So, by proposition, we know homology groups of \mathbb{R}^{n} are homology groups of a point
Example (helpful for HW3):

$$
\begin{aligned}
& S^{\prime} \simeq \mathbb{R}^{2} \backslash\{0\} \\
& \begin{aligned}
f: S^{\prime} & \rightarrow \mathbb{R}^{2} \backslash\{0\} \quad g: \mathbb{R}^{2} \backslash\{0\} \rightarrow S^{1} \\
x & \mapsto x
\end{aligned} \\
& g f=i d_{S^{1}} \quad f g \sim i d_{\mathbb{R}^{2} \backslash\{0\}}
\end{aligned}
$$

