Homotopy (Equivalence)

Last time: Downloaded some properties of homology
Yn≥O, Vabelian gp. A,
$\begin{array}{c} \underline{\forall n \geq 0, \forall abelian gp. A,} \\ (1) Spaces \rightarrow Abelian Groups \\ \hline Think of n X \longmapsto H_n(X; A) \end{array}$
• $h_n(X, A)$
in Hn as "The nth homology group
representing of X with coefficients in A"
something When A is implicit, we often write Hn(X)
something When A is implicit, we often write Hn(X) in nth dimension (for Hn(X; A))
1.2.
Ho captures (a) $\forall f: X \rightarrow Y$ continuous, we have an induced
something homomorphism f_* $H_n(X, A) \rightarrow H_n(Y; A)$
something homomorphism f* Hn(X;A) → Hn(Y;A) zero dimensional, (*) When f=id, f* = id
H. CONTURES
something (3) $(q \circ f)_{*} = q_{*} \circ f_{*}$
something (3) $(g \circ f)_* = g_* \circ f_*$) dimensional, That is, $H_n(-; A)$ is a functor.
of chomeomorphic
Think about Proposition: If $X \cong Y$, then $\forall n \ge 0$, $\forall A$,
homology groups $H_n(X;A) \cong H_n(Y;A)$
as a cubist
painting of the Fact: H (pt. A) ~ SA, n=0
painting of theFact: $H_n(pt; A) \cong \begin{cases} A & n = 0 \\ 0 & n \ge 1 \end{cases}$ SpaceJust take this fact for granted
Just take this fact for granted
J
<u>Definition</u> : Fix two continuous functions $f, g: X \rightarrow Y$. A homotopy from f to g is a continuous function H: $X \times [0,1] \rightarrow Y$
A homotopy from t to q is a continuous
tunction
$H: X \times LO'I \longrightarrow X$
$(X,t) \mapsto H(X,t)$
such that
H(-, 0) = t'
H(-, 1) = q
Example: $X = S' = E x_1^2 + x_2^2 = 13 < 112^2$
4f 9
(X_10) $(X_20.5)$ (X_11)
$X \times [0,1] = $
$\chi \times [0,1] = (1,1)$
/

Example:
$$X = pt.$$
, $Y = R^2$ g.t
f: $X \rightarrow Y$
g: $X \rightarrow Y$
 $x \rightarrow (2,3)$
 $y \rightarrow (-1,5)$
Define H: $X \times [0,1] \rightarrow Y$
 $x \rightarrow (-1,5)$
At $t = 0$, image of function is (2,3)
At $t = 1$, " (-1,5)
What happens in between? It's a
straight line
Points move from f to g as time goes
from 0 to 1
Given f, g: $X \rightarrow R^n$
 $H(X_1 \in C) := (1-t) f(x) + tg(x)$
Any two functions are homotopic if their
codomain is R^n
• We say f is homotopic to g if \exists a homotopy from
f to g
• "Homotopic to" is an equivalence relation (on the
set of continuous functions $X \rightarrow Y$)
(can try to show this as an exercise)
Do: (0,2.1
(0.2.2
(0.2.3)
b continuity - proving continuous using definis
can be tedious here.
Cheat: Anything with a formula is probably cts.
Sums, preducts, composition of functions is cts.
 $R \times R \notin R$
(t³, cost sin t) $\leftarrow t$ t
Projections $J \times I$
 $R = R$
(t³, cost sin t) $\leftarrow t$ t
Projections $J \times I$
 $R = R$
(t³, cost sin t) $\leftarrow t$ t
Projections $J \times I$
 $R = R$
(t³, cost sin t) $\leftarrow t$ t
Projections $J \times I$
 $R = R$
 $R = R$
(t³, cost sin t) $\leftarrow t$ t
Projections $J \times I$
 $R = R$
 $R = R$

Definition: A continuous function
$$f: X \Rightarrow Y$$
 is called a
homotopy equivalence if
 $\cdot \exists g: Y \Rightarrow X$
 $\exists H: X \Rightarrow X = [0,] \Rightarrow X, G: Y \times [0,] \Rightarrow Y$
such that
 $gf \Rightarrow id_X$ and $fg \Rightarrow id_Y$
 $toomposition$
Tf these are equalities and don't need
 $H, G, then we have a homeomorphismwhen we need H and G, then they are"equivalent up to homotopy" $Proposition: Tf X \cong Y, then $\forall h \ge 0, \forall A,$
 $H_n(X; A) \cong H_n(Y; A)$
 $Y = (quivalent)$
 $Fromotopy equivalent$
 $Proposition: Tf X = Y, then $\forall h \ge 0, \forall A,$
 $H_n(X; A) \cong H_n(Y; A)$
 $(sisomorphic)$
 $Example: pt \cong IR^n (\forall h \ge 0)$
 $Why? f: pt \Rightarrow IR^n g: IR^n \Rightarrow pt$
 $gf = id_{pt} = fg \sim id_{pn}$
 $R^h \Rightarrow iR^n$
So, by proposition, we know homology
groups of IR^n are homology groups of
a point
 $Example (helpful for Hw B):$
 $S' \cong IR^n X \ge 3$
 $f: S' \Rightarrow R^n X \ge 3$
 $gf = id_{pt} = fg \sim id_{p2} \otimes 3$
 $f: S' \Rightarrow R^n X \ge 3$
 $gf = id_{p2} = id_{p2} \otimes 3 \Rightarrow S'$
 $X \mapsto X$
 $X \mapsto X$
 $y \mapsto$$$$