
Reading 5

Homology (properties without
definitions)

Mathematics is always exciting when di�erent fields of math help each other.
The reason we have spent the first few classes reviewing both topology and
algebra is that – whether we like it or not – algebra and topology help each
other.

In this course, we’ll mostly see the way in which algebra helps topology.1
The main tool we will learn is called homology.

5.1 What homology does

Here, in a nutshell, is what homology will be.
Begin by fixing an abelian group A. Then

(I) For every topological space X, homology assigns an infinite family of
abelian groups:

H0(X; A), H1(X; A), H2(X; A), H3(X; A), . . . .

1
Here are some famous ways in which topology helps algebra: The proof of the fun-

damental theorem of algebra (that every complex polynomial has at least one root), the

classification of semisimple Lie groups and Lie algebras (classifying symmetries that are

continuous), concocting new presentations of certain groups (by giving, for example, dif-

ferent presentations of fundamental groups of spaces), and on and on.
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Here, each Hi(X; A) is an abelian group. As you can see, there are
countably many of them – there is an abelian group for every non-
negative integer. These are called the homology groups of X with
coe�cients in A. Hn(X; A) is called the nth homology group of X

(with coe�cients in A).
Indeed, changing the abelian group A can change the above groups!
In this class, we will mostly work with A = F2, and sometimes we will
work with A = Z.
In summary: For every space X, for every integer n Ø 0 and every
abelian group A, homology defines an abelian group Hn(X; A).

(II) For every continuous function f : X æ Y between topological spaces,
homology assigns a group homomorphism between homology groups:

H0(X; A) æ H0(Y ; A), H1(X; A) æ H1(Y ; A), , . . . .

Each of these is called the induced map on homology, or the map on
homology induced by f .2

(a) If f : X æ X is the identity function (sending every element x

to itself) then the induced map on homology is also the identity
function (for every homology group).

(III) Finally, homology does something that is amazing (though it may not
be clear why it is so amazing): If f : X æ Y is a continuous function
and if g : Y æ Z is another continuous function, the map induced by
g ¶ f is the composition of the maps induced by g and by f . In other
words, induced maps on homology respect composition.

Remark 5.1.1. The above properties come up often enough in mathematics
that it has a name. We say that (for every n and every A) Hn(≠; A) is a
functor from topological spaces to abelian groups. You won’t need to know
this terminology for this course.

Notation 5.1.2. We often use the notation

Hú(X; A)
2
In general, if two continuous maps are di�erent, then their induced maps may also be

di�erent. So the induced map on homology depends on f .
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to denote the entire collection of homology groups of X. Or, sometimes we
use Hú(X; A) as though ú is a variable – a symbol waiting for an integer n

to be plugged in.
We also often use the notation

fú : Hú(X; A) æ Hú(Y ; A) and fú : Hn(X; A) æ Hn(Y ; A)

to denote the induced maps. Confusingly, the “lower-star” notation fú is
ubiquitous (in the literature) for both the settings encoded in the above line.

5.2 Homology is an invariant
Before we get to examples, I want us to prove the following:

Theorem 5.2.1. If f : X æ Y is a homeomorphism, then the maps on
homology induced by f are all isomorphisms.

In particular, if two topological spaces X and Y are homeomorphic, then
all of their homology groups are isomorphic.

More precisely: Suppose X and Y are homeomorphic. Then for every n

and every A, the group homomorphism induced by f Hn(X; A) ≥= Hn(Y ; A)
is an isomorphism.

Put another way, homology groups are an invariant of topological spaces.
Indeed, take the contrapositive of Theorem 5.2.1.

Corollary 5.2.2. If two spaces have non-isomorphic homology groups – that
is, if there exists some n and some A for which Hn(X; A) is not isomorphic
to Hn(Y ; A) – then the spaces must not be homeomorphic.

Here is a guided series of exercises to help prove the theorem:

Proposition 5.2.3. Let f : X æ Y be a function and g : Y æ Z be a
function.

Suppose g ¶ f is a bijection. Show that f is an injection and g is a
surjection.

Proposition 5.2.4. Let X be a set, and let f : X æ X be the identity
function – meaning f(x) = x. Show that f is a bijection.
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Notation 5.2.5. Let f : X æ Y be a continuous function. In what follows,
we let

Hn(f) : Hn(X; A) æ Hn(Y ; A)

be the induced function guaranteed by (II).

Exercise 5.2.6. Suppose that f : X æ Y is a homeomorphism. Consider
the following sequence of statements.

(i) Let f
≠1 : Y æ X be the inverse continuous function.

(ii) We know that for every n and A, Hn(f ¶ f
≠1) = Hn(f) ¶ Hn(f≠1).

(iii) Therefore, Hn(f) ¶ Hn(f≠1) is the identity function of Hn(Y ; A).

(iv) We conclude that Hn(f) is a surjection.

(v) Using similar reasoning, we see that Hn(f≠1) ¶ Hn(f) is the identity
function of Hn(X; A).

(vi) Therefore, Hn(f) is an injection.

(vii) We conclude that Hn(f) is a bijection.

(viii) Therefore, Hn(X; A) and Hn(Y ; A) are isomorphic.

Here is the exercise:

(a) Justify every statement (i) - (viii) above. You will need to use the pre-
vious propositions, and the properties of homology I told you about.

(b) Have we proven Theorem 5.2.1? Discuss.

5.3 Examples of homology
In our next few classes, we will discuss techniques for computing homol-
ogy. But to whet our appetites, I will now give you some examples of what
homology looks like.

(In this class, we will mostly focus on the case where the coe�cient group
A equasl F2 or Z.)
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5.3.1 The point
Let X be a single point. (There is a unique topology on this set – if you
haven’t seen this before, try it out as an exercise.) Then for any abelian
group A, the homology of X is as follows:

Hn(pt; A) ≥=

Y
]

[
A n = 0
0 otherwise

So, most homology groups are zero, while the 0th (zeroth) homology group
is a copy of A. So by plugging in our two favorite examples of A, we get:

Hn(pt;F2) ≥=

Y
]

[
F2 n = 0
0 otherwise

, Hn(pt;Z) ≥=

Y
]

[
Z n = 0
0 otherwise

(Here, pt is my notation for the point.)

5.3.2 Points
Now let X be a collection of k many disjoint points, with the discrete topol-
ogy. Concretely, you can take k points inside of Euclidean space (of any
dimension) and give this subset the subspace topology. Then we will see
that

Hn(X; A) ≥=

Y
]

[
A

ük
n = 0

0 otherwise
.

That is, the homology of k points is zero in all degrees except degree n = 0.
There, the homology group is given by k copies of the coe�cient group A.
So by plugging in our two favorite examples of A, we get:

Hn(X;F2) ≥=

Y
]

[
Fük

2 n = 0
0 otherwise

, Hn(X;Z) ≥=

Y
]

[
Zük

n = 0
0 otherwise

Combining the above two examples, we see that a collection of k points and
a collection of l points are not homeomorphic unless k = l. You could have
seen this already by noting that k points and l points could not even be
in bijection (let alone admit a homeomorphism between them). Likewise,
perhaps the easiest way to see that Fük

2 and Fül
2 are not isomorphic is to see

that the former has 2k elements, while the latter has 2l elements (and hence
could not be isomorphic as groups, as they do not even admit a bijection
between them).
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Notation 5.3.1 (Disjoint union). We write

pt
·

pt

for the disjoint union of two points, and

pt
·

. . .
·

pt

for the disjoint union of k points, where k is how many copies of pt are
implied to appear in the above line.

The notation ‡ means “disjoint union,” and this terminology may di�er
slightly from your previous classes. In previous classes, the phrase “disjoint
union” referred to a property of a union – you can take the disjoint union of
two sets that happen to have no intersection.

However, above, we take “disjoint union” to be a new operation, which
formally treats all its constituents as disjoint. For example,

{A, B}
€

{A, C}

would normally only have three elements (called A, B, C) but

{A, B}
·

{A, C}

is a set with four elements. One model for this disjoint union is the set

{A
Õ
, B

Õ
, A, C}.

Perhaps you get some idea of what I mean by “formally” treating the sets as
disjoint.

5.3.3 Euclidean space
It turns out that the homology of Rk (for any dimension k) is isomorphic to
the homology of a point. We will see the computation in one or two weeks,
but for now let me just re-iterate the answer:

Hn(Rk; A) ≥=

Y
]

[
A n = 0
0 otherwise

Now, here is a more sophisticated fact that should be emphasized in any
course on group theory. You should not care whether two groups are isomor-
phic, but if they are, how. In other words, if somebody claims that G and H
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are isomorphic groups, you should be very curious what group isomorphism
that person can construct.

Here, the group isomorphism Hn(pt; A) ≥= Hn(Rk; A) is induced by geom-
etry. Remember that continuous functions induce maps between homology
groups3. To take advantage of this, choose any element x œ Rk. Then the
function

pt æ Rk

sending the unique element of pt to x, induces a map on homology groups

Hn(pt; A) æ Hn(Rk; A)

for all n Ø 0 and for all abelian groups A. It turns out that this map is an
isomorphism (for all n and for all abelian groups A).

This example shows that homology is not a “complete” invariant. In other
words, there may be two spaces X and Y that have isomorphic homology
groups (in fact, the isomorphism may even be induced by a continuous map!)
but where X and Y are not homeomorphic.

Example 5.3.2. pt is not homeomorphic to Rk for any k Ø 1. (There
couldn’t even be a bijection between the two, as Rk has infinitely many
elements.) Regardless, these two spaces have isomorphic homology groups.

5.3.4 The circle
Now let’s see our first example of homology groups that are not all concen-
trated in degree zero.

Let S
1 be the unit circle, endowed with the usual topology (that is, S

1 is
endowed with the subset topology inherited from R2).

Then it turns out

Hn(S1; A) ≥=

Y
__]

__[

A n = 0
A n = 1
0 otherwise

.

So, if you were to encode this in a table, after plugging in our favorite exam-
ples of A, we find:

3
See (II)
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H0(S1;F2) = F2
H1(S1;F2) = F2
H2(S1;F2) = 0
H3(S1;F2) = 0

... = 0

H0(S1;Z) = Z
H1(S1;Z) = Z
H2(S1;Z) = 0
H3(S1;Z) = 0

... = 0

Then, because S
1 and Rk (for any k) have non-isomorphic homology

groups, S
1 is not homeomorphic to Rk (for any k).

(This could be proven another way: S
1 is compact by the Heine-Borel

theorem, but Rk is not compact for k Ø 1.)
We will take the homology of a point for granted. In the coming class ses-

sions, we’ll see how to actually compute homology groups for all the examples
above using some axioms for homology. Get excited!


