\& Is there a bijection $\operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \cong \mathbb{Z}$?
Yes! How?
Prop: For any group B, the $f_{x n} f:\{\mathbb{Z} \rightarrow B\}$
(This is a universal, defining popeenty of the integers!
such that $f(i+j)=f(i)+f(j)=\operatorname{Hom}(Z, B) \rightarrow B$.

- Let B be \mathbb{Z}. Then the statement holds!
- Exercise: Prove the prop.

Homology + its properties
What is homology?

What is written in these notes does not quite make sense :-). The function from Home(Z, B) to B takes homomorphism f to $f(1)$.

* Homology is an assignment:

For any top. space X, any integer $n \geq 0$, and any alan group A, the nth homology of X w) coeff. in A denoted $H_{n}(X, A)$ is an abelian group.

This arrow should be a I-> arrow, not a $\rightarrow>$ arrow. (Note the vertical butt.)

$$
9^{\circ} \quad x \rightarrow\left\{H_{n}(x, A)\right\}_{n \geq 0}
$$

Each space gets a special sequence of groups.'

If \exists some n, A such that $H_{n}(X, A) \neq H_{n}(Y, A)$, then $X \neq Y$. Homology groups distinguish top. spaces!

Properties of Homologies:

1) \forall top. space $X, \forall n \geq 0, \forall$ abelian group A, we have an abelian group $H_{n}(X, A)$.
2.) \forall continuous $f x_{n} f: X \rightarrow Y$, we have group homomorphisms $H_{n}(X, A) \rightarrow H_{n}(Y, A)$.
NOTE: This map is often denoted $f_{*}: H_{n}(X, A) \rightarrow H_{n}(Y, A)$.
we often write $H_{\star}(X, A)$ to mean $\left\{H_{n}(X, A)\right\}$

$$
H_{A}(X, A) \leftarrow \text { this } \& \text { is an index }
$$

$f_{\Perp} \in$ this says "push forward": go from x to Y.
2.a) When f is the identity $f_{x n}, f_{*}$ is also the identity fun.

$$
\forall n \geq 0 \text { and } \forall A \text {, id }: H_{n}(x, A) \rightarrow H_{n}(x, A)
$$

3.) ()$_{\star}$ respects composition.

That is, $\forall f: X \rightarrow Y$ and $g: Y \rightarrow Z$ that are continuous,

$$
(g \circ f)_{\star}=g_{\star} \circ f_{\star}
$$

Remark: 1 thu 3 mean that hoondogy is a functor!
Exaciri from reading 5 :
*S.2.3 thru 5.2 .6
Given $f: X \rightarrow Y$ is a homeomorphism.
By deft, f is cont.

$$
f \text { is a bijection. }
$$

f^{-1} is cont.
By prop 2, $H_{n}(f)$ and $H_{n}\left(f^{-1}\right)$ exist.

$$
\begin{aligned}
H_{n}(f) \cdot H_{n}\left(f^{-1}\right) & =H_{n}\left(f \circ f^{-1}\right) \text { pipe } 3 \\
& =H_{n}\left(i d_{y}\right) \\
& =i d_{H_{n}(Y: A)}
\end{aligned}
$$

Any id $f_{x n}$ is a bijection.
Then by $S .2 .3, H_{n}(f)$ is onto, and $H_{n}\left(f^{-1}\right)$ is an injection.
Then, use the same reasoning on $H_{n}(f-1) \circ H_{n}(f)$ to show $H_{n}(f)$ is an injection.
Thus, $H_{n}(f)$ is a bijection.
Therefore, if f is a homeomorphism, then $H_{n}(f)=f_{\star}$ are all group isomorphisms.
Corollary (contrupoitiva):
If $\exists n$ and A such that $H_{n}(X, A) \neq H_{n}(Y, A)$, then X is not hemeomosphic to Y.

* Examples of Homology:
- Let X be a point (we write $X=p t$). X is a set w/ 1 element.

Then, \exists only 1 topology on X.
For our class, A will always be \mathbb{F}_{2} or \mathbb{Z}.
Then, $H_{0}\left(X, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}$,

$$
\ldots i \|(x \mid \mathbb{F}) \simeq \wedge
$$

Then，$H_{0}\left(X, \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}$ ，
and $H_{n}\left(X, \mathbb{F}_{2}\right) \cong 0 \quad \forall_{n}>0$ ．

Also，$H_{n}(p t, \mathbb{Z}) \cong \begin{cases}\mathbb{Z} & \text { when } n=0 \\ 0 & \text { when } n \geq 1\end{cases}$
－Another example：let X be the set w / k points $w /$ discrete topology， the topology of k distinct p ts in \mathbb{R}^{2} ．
Sperificully，$X=p t \geqslant p t ⿻ 上 丨 p^{t}$
X has k＂copies＂of pt．
Then $H_{n}\left(X, \mathbb{F}_{2}\right) \cong\left\{\begin{array}{l}\mathbb{F}_{2} \oplus \mathbb{F}_{2} \ldots \oplus \mathbb{F}_{2} \\ 0 \quad \text { when } n>0 .\end{array}\right.$ when $n=0$
Similarly，$H_{n}(X, \mathbb{Z}) \cong \begin{cases}\mathbb{Z}^{\oplus k} & n=0 \\ 0 & \text { when } n>0 .\end{cases}$
－One more：Let $X=S^{\prime}$（the unit circle in \mathbb{R}^{2} ）．
Then $H_{n}\left(X, \mathbb{F}_{2}\right) \cong\left\{\begin{array}{lll}\mathbb{F}_{2} & \text { when } & n=0 \\ \mathbb{F}_{2} & \text { when } & n=1 \\ 0 & \text { when } & n>1 .\end{array}\right.$

