
Reading 4

Reviewing basics of abelian
groups

Goals
(a) Understand F2 and Z

(b) Perform computations in direct sums of the above groups

(c) Become familiar with how to think of certain homomorphisms as matrices

(d) Compute kernels and images of homomorphisms

4.1 Abelian groups and examples
Recall that an abelian group is the data of a set A and a function A◊A æ A

satisfying some properties.

Notation 4.1.1. It is often tradition to write this function using the plus
symbol; so the image of a pair (a, b) œ A ◊ A under this function is often
written a + b.

Definition 4.1.2 (Abelian group). An abelian group is a set A together with
a function + : A ◊ A æ A satisfying the following properties:

(i) + is an associative operation, meaning for every triplet a, b, c œ A, we
have that (a + b) + c = a + (b + c).
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26 READING 4. REVIEWING BASICS OF ABELIAN GROUPS

(ii) + is a commutative operation, meaning that for every pair a, b œ A, we
have that a + b = b + a.

(iii) + has a unit, meaning that there exists an element (traditionally de-
noted as 0) inside of A such that, for every a œ A, we have 0 + a = a.

(iv) + admits inverses, meaning that for every a œ A, there exists an element
b such that a + b = 0. Following tradition, this element b is usually
denoted by ≠a.

Remark 4.1.3. There are various consequences of these properties. For
example, there is one and only one unit – so the notation 0 is defined un-
ambiguously – and likewise, any a œ A has a unique inverse, so the notation
≠a is also defined unambiguously. You should check these claims if you have
not thought about them before. However, this is not a group theory class,
so we will take these facts (which are proven in a standard course on group
theory) for granted.

Definition 4.1.4. The element 0 is called the additive unit, the additive
identity, or the zero element.

Given an element a œ A, the element ≠a is called the negative of a or the
additive inverse to a.

Notation 4.1.5 (Subtraction notation). Let A be an abelian group and fix
two elements a, b œ A. Then the expression

a ≠ b

is shorthand for the expression a + (≠b).

There are two basic examples of abelian groups that begin our journey:
F2 and Z.

Definition 4.1.6 (F2). We let F2 = {0, 1} denote the set consisting of two
elements 0 and 1, and we define an operation as follows:

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0.

Exercise 4.1.7. Verify that F2 (with the above addition) is an abelian group.
In particular, make sure you understand why ≠1 = 1.

Exercise 4.1.8. Compute the following in F2:
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(a) 1 + 1

(b) 1 + 0

(c) (1 + 1) + 1

(d) 1 + (1 + 1)

(e) 1 + 1 + 1

(f) 1 + (≠1)

(g) 1 ≠ 1

(h) ≠1 + 1

(i) ≠1 + 1 ≠ 1 + 1 + 1

Remark 4.1.9 (There are other notations for F2). F2 also goes by other
names. The most common is Z/2Z. Many topologists – especially homotopy
theorists – use the notation C2 because it is faster to write on the blackboard.
The notation stands for “the cyclic group of order 2,” and you do not need
to know what this name literally means. Our notation, F2, stands for “the
field with 2 elements,” but you also do not need to know what a field is (in
this course).

Definition 4.1.10. We let Z denote the usual set of integers, with addition
given by the usual notion of addition.

Exercise 4.1.11. Verify that Z (with the above addition) is an abelian
group. Make sure you understand why ≠1 ”= 1.

4.2 Making new abelian groups
Given two abelian groups A and B, we can make a new abelian group called
the direct sum of A and B.

Definition 4.2.1. Fix two abelian groups A and B. The direct sum of A

and B, as a set, is the product A ◊ B. Addition is defined by:

(A ◊ B) ◊ (A ◊ B) æ A ◊ B, ((a1, b1), (a2, b2)) ‘æ (a1 + a2, b1 + b2).

Put more succinctly,

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2).

We denote the direct sum of A and B by the notation

A ü B.
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Remark 4.2.2. AüB is the exact same thing as A◊B. The former notation
emphasizes the group structure on AüB, and also emphasizes that A and B

are abelian. (The notion of direct sum is typically not defined for non-abelian
groups.) We will not deal too much with non-abelian groups in this course,
so we will ignore this point and just be happy with the direct sum notation.
It also turns out that ü and ◊ di�er when we input infinitely many abelian
groups – we will cross this bridge if we encounter it.

Example 4.2.3. The group F2 ü F2 has four elements:

(0, 0), (1, 0), (0, 1), (1, 1).

The addition in F2 ü F2 is as follows. (You should verify that there are no
typos in the equations below.)

• (0, 0) + (0, 0) = (0, 0).

• (0, 0) + (1, 0) = (1, 0).

• (0, 0) + (0, 1) = (0, 1).

• (0, 0) + (1, 1) = (1, 1).

• (1, 0) + (0, 0) = (1, 0).

• (1, 0) + (1, 0) = (0, 0).

• (1, 0) + (0, 1) = (1, 1).

• (1, 0) + (1, 1) = (0, 1).

• (0, 1) + (0, 0) = (0, 1).

• (0, 1) + (1, 0) = (1, 1).

• (0, 1) + (0, 1) = (0, 0).

• (0, 1) + (1, 1) = (1, 0).

• (1, 1) + (0, 0) = (1, 1).

• (1, 1) + (1, 0) = (0, 1).

• (1, 1) + (0, 1) = (1, 0).

• (1, 1) + (1, 1) = (0, 0).

Exercise 4.2.4. What element of F2üF2 is the zero element? Which element
is the additive inverse to (1, 1) ? Which element is the additive inverse to
(1, 0)?

Example 4.2.5. The group F2 ü Z has infinitely many elements. Here are
some examples of elements:

(0, 3), (0, ≠7), (1, 3), (1, 57788), (1, ≠1).

Exercise 4.2.6. What element of F2 üZ is the zero element? Which element
is the additive inverse to (0, 5)? To (0, ≠5)? To (1, ≠5)? To (1, 1)?
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We can also make direct sums of more than two abelian groups.

Example 4.2.7. The group F2 ü F2 ü F2 ü F2 has 16 elements. They are
given as follows:

• (0, 0, 0, 0)

• (0, 0, 0, 1)

• (0, 0, 1, 0)

• (0, 0, 1, 1)

• (0, 1, 0, 0)

• (0, 1, 0, 1)

• (0, 1, 1, 0)

• (0, 1, 1, 1)

• (1, 0, 0, 0)

• (1, 0, 0, 1)

• (1, 0, 1, 0)

• (1, 0, 1, 1)

• (1, 1, 0, 0)

• (1, 1, 0, 1)

• (1, 1, 1, 0)

• (1, 1, 1, 1)

Here is an example of addition in F2 ü F2 ü F2 ü F2:

(1, 1, 0, 1) + (0, 1, 0, 1) = (1 + 0, 1 + 1, 0 + 0, 1 + 1) = (1, 0, 0, 0).

When we start having many copies of an abelian group in a direct sum,
we don’t want to write out all the copies. So we have the following shorthand:

Notation 4.2.8. For any integer n Ø 0 and any abelian group A, we let

A
ün

denote the direct sum of n copies of A.

Remark 4.2.9. By convention A
ü0 is the abelian group with only one ele-

ment in it, also called the trivial abelian group.

Example 4.2.10. The abelian group in Example 4.2.7 may be written Fü4
2 ,

or (F2)ü4, or F2
ü4.

Notation 4.2.11 (Column vector notation). It is also common to denote an
element of A

ün by column vectors. So the column vector
Q

cccca

a1
a2
...

an

R

ddddb

denotes the element (a1, a2, . . . , an) œ A
ün.
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Example 4.2.12. The notation
Q

ccca

3
≠2
7
9

R

dddb

represents the element (3, ≠2, 7, 9) of Zü4.

Exercise 4.2.13. Compute the following additions in F2
ü4.

(a)

Q

ccca

1
1
1
1

R

dddb +

Q

ccca

1
1
1
1

R

dddb

(b)

Q

ccca

1
0
1
0

R

dddb +

Q

ccca

1
1
1
1

R

dddb

(c)

Q

ccca

1
1
1
1

R

dddb +

Q

ccca

1
0
1
0

R

dddb

(d)

Q

ccca

0
0
1
0

R

dddb +

Q

ccca

1
0
1
0

R

dddb

(e)

Q

ccca

0
0
0
0

R

dddb +

Q

ccca

0
0
0
0

R

dddb

(f)

Q

ccca

0
0
0
0

R

dddb +

Q

ccca

1
0
0
1

R

dddb

4.3 Group homomorphisms
Definition 4.3.1. Let A and B be abelian groups. A group homomorphism
is a function f : A æ B satisfying the following property: For every a, a

Õ œ A,
f(a + a

Õ) = f(a) + f(aÕ).

Intuitively, a group homomorphism is a special kind of function: one that
respects addition.

Example 4.3.2. Fix your favorite integer k. Then the function f : ZtoZ
sending a ‘æ ka is a group homomorphism.

For example, if k = 3, we indeed have that f(a + a
Õ) = 3(a + a

Õ), which in
turn equals 3a+3a

Õ = f(a)+f(aÕ). In other words, the distributive property
of multiplication over addition guarantees that multiplication by k is a group
homomorphism.

Exercise 4.3.3. Write down every possible function from F2 to F2. (You
should have four of them.)

Identify which of these are group homomorphisms.
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Exercise 4.3.4. Show that (somewhat confusingly) the set of group ho-
momorphisms from Z to Z is in bijection with the set of integers. (Hint:
Example 4.3.2.)

More generally, if B is any group, show that the function

{group homomorphisms f : Z æ B} æ B, f ‘æ f(1)

is a bijection.
(This is the universal property of Z – a homomorphism out of Z is

uniquely determined by choosing the element of B to hit with 1 œ Z.)

4.3.1 Group isomorphisms
Definition 4.3.5. A group homomorphism f : A æ B is called a group
isomorphism if f is a bijection.

Remark 4.3.6. It is a standard fact – that you can prove! – that if f is a
group isomorphism, the its inverse function is also a group homomorphism,
and hence a group isomorphism.

Remark 4.3.7. You should think of a group isomorphism as a way to see
that two groups are equivalent. (This is in analogy to bijection – a bijection
is a way to see that two sets are equivalent in size. A group isomorphism is
more – it shows not only that two abelian groups have the same size, but their
additions can be translated into each other without any loss of information.)

As best as possible, you should not resort to being content that two groups
“are isomorphic.” Instead, you should always try to remember the isomor-
phism itself – i.e., remember the function. This is a rather sophisticated
observation depending on where you are in your career, but it is true. For
example, a group A can have many group isomorphisms to itself! Of course
A is equivalent to itself, but each of these group isomorphisms tells us a new
and equivalent way to think about A.

4.3.2 Some group homomorphisms can be thought of
as matrices

When a group homomorphism is has domain A
üm and codomain A

ün, one
can express the group homomorphism as a matrix.
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Example 4.3.8. The matrix
Q

ca
0 1 3 5

≠3 1 ≠2 0
1 2 1 19

R

db (4.3.2.1)

encodes a group homomorphism from Zü4 to Zü3. The value of the group
homomorphism on an element is computed by matrix multiplication. For
example,

Q

ca
0 1 3 5

≠3 1 ≠2 0
1 2 1 19

R

db

Q

ccca

9
1
7
7

R

dddb =

Q

ca
0 · 9 + 1 · 1 + 3 · 7 + 5 · 7

≠3 · 9 + 1 · 1 + ≠2 · 7 + 0 · 7
1 · 9 + 2 · 1 + 1 · 7 + 19 · 7

R

db =

Q

ca
57

≠40
151

R

db .

In other words, the group homomorphism sends the element (9, 1, 7, 7) to the
element (57, ≠40, 151).

To make sure you know how matrix multiplication works, you should
confirm that the element (1, 1, 0, 0) is sent to (1, ≠2, 3) under this matrix.

Remark 4.3.9. We are following the convention that, if a matrix is to be
thought of as a group homomorphism, then we input a domain vector to the
right of the matrix – meaning a matrix multiplies a vector from the left. This
is to conform to the order of notation for functions and inputs. When we
have a function f act on an input a, we write f(a) – the function is on the
left, and the input is on the right.

Exercise 4.3.10. Consider the group homomorphism given by the matrix
in Example 4.3.8. Compute the image of the following elements of Zü4 under
this group homomorphism:

(a)

Q

ccca

0
0
0
0

R

dddb

(b)

Q

ccca

1
0
0
0

R

dddb

(c)

Q

ccca

0
1
0
0

R

dddb

(d)

Q

ccca

0
0
1
0

R

dddb

(e)

Q

ccca

0
0
0
1

R

dddb.

(f)

Q

ccca

2
1
0
0

R

dddb

(g)

Q

ccca

2
0
1
0

R

dddb

(h)

Q

ccca

1
≠1
≠3
1

R

dddb

(i)

Q

ccca

19
0
8
0

R

dddb

(j)

Q

ccca

0
0
0
9

R

dddb.
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For parts (b) through (e), what do you notice about your answers and
the columns of the original matrix?

Exercise 4.3.11. F2
ü3 has eight elements. For all eight elements, compute

their images under the following matrices:

(a)

Q

ca
1 0 0
0 1 0
0 0 1

R

db (b)

Q

ca
1 0 0
0 1 1
0 0 1

R

db (c)

Q

ca
1 0 0
0 1 1
1 1 1

R

db (d)

Q

ca
0 1 1
1 1 0
1 0 1

R

db

Based on your answers, explain why the linear transformations in (a) and
(b) are bijections. How about (c) and (d)?

Exercise 4.3.12. The following all encode group homomorphisms between
F2

üm and F2
ün.

(i)

Q

ca
1 1
0 0
1 1

R

db
(ii)

1
1 1

2

(iii)
A

1 1
0 0

B

(iv)

Q

ca
1 0
0 1
1 1

R

db

(a) For each matrix, indicate the domain and codomain. (As a hint: Matrix
(i) has domain F2

ü2 and codomain F2
ü3.)

(b) F2
ü2 has four elements. For all eight elements, compute their images

under the above matrices.

(c) Based on your answers, explain which of the above four matrices are
injections, which are surjections, and which are bijections.

4.4 Kernels
Kernels tell you a lot about a group homomorphism.

Definition 4.4.1. Let f : A æ B be a group homomorphism. The kernel of
f is the set of all elements in A that are sent to 0 œ B. We write

ker(f)

to denote the kernel of f .

The following is proven in a typical class involving group theory:
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Proposition 4.4.2. Let f : A æ B be a group homomorphism. The follow-
ing are equivalent:

(a) The kernel of f consists of exactly one element.

(b) The kernel of f consists only of the element 0 œ A.

(c) f is an injection.

Remark 4.4.3. Proposition 4.4.2 is useful for a few reasons; the biggest
reason is that the proposition gives us a new way to determine whether a
group homomorphism is an injection or not. Typically, to determine if f is an
injection, one has to prove that f(a) = f(aÕ) =∆ a = a

Õ. The proposition
tells us that (if we’d like) we can instead prove that f(a) = 0 =∆ a = 0.
(Note that the two instances of 0 here mean two di�erent things – why?)

Example 4.4.4. Consider the group homomorphism f : F2
ü3 æ F2

ü2 given
by the following matrix: A

1 1 1
1 0 1

B

.

What does it mean for an element (a, b, c) œ F2
ü3 to be in the kernel? It

means precisely that
A

1 1 1
1 0 1

B

.

Q

ca
a

b

c

R

db =
A

0
0

B

.

Computing the righthand side, we find that (a, b, c) œ ker(f) if and only if
the following equations are satisfied:

a + b + c = 0 and a + c = 0.

Subtracting the second equation from the first, we find that

(a + b + c) ≠ (a + c) = 0 ≠ 0
b = 0. (4.4.0.1)

Now, because a and c are elements of F2, of course a + c = 0 is equivalent to
saying a = c. In other words, we find that (a, b, c) œ ker(f) if and only if (i)
a = c and b = 0. We conclude there are two elements in the kernel:

(1, 0, 1) and (0, 0, 0).
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By Proposition 4.4.2, we conclude that f is not an injection.1

Remark 4.4.5. An e�cient way to identify the kernel of a matrix is by
computing the reduced row echelon form. We will not go over this, and you
also will not need it to compute kernels in this class.

Exercise 4.4.6. (a) Compute the kernels of all the group homomorphisms
in Exercise 4.3.3.

(b) Compute the kernels of all the group homomorphisms in Exercise 4.3.11.

(c) Compute the kernels of all the group homomorphisms in Exercise 4.3.12.

4.5 Images
Definition 4.5.1. The image of a homomorphism f : A æ B is the image
of f as a function. (That is, the set of all elements b œ B for which there
exists an a œ A with f(a) = b.)

Here is a fact that is proven in linear algebra and some group theory
classes:

Proposition 4.5.2. If a homomorphism f is given by a matrix, the image
of f is generated by the columns of the matrix.

Remark 4.5.3. Here, by generated, we mean that the entire image can be
obtained by some linear combination of the columns. For example, given the
matrix (4.3.2.1), any element of its image can be written as a summation

a

Q

ca
0
3

≠1

R

db + b

Q

ca
1
1
2

R

db + c

Q

ca
3

≠2
1

R

db + d

Q

ca
5
0
19

R

db

where a, b, c, d are integers. Indeed, given values of a, b, c, d, the element
above is the image of the element (a, b, c, d) œ Zü4.

Remark 4.5.4. Instead of “generated,” we sometimes say “spanned.” So
the image of a matrix is spanned by its columns.

1
In fact, just knowing the domain and codomain of f , one can see that f cannot be an

injection. Why?
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Example 4.5.5. Consider the homomorphism f : F2
ü3 æ F2

ü2 given by the
following matrix: A

1 1 1
1 0 1

B

.

By Proposition 4.5.2, the image of f is spanned by the columns of the matrix.
Hence, any element of the image is of the form

a

A
1
1

B

+ b

A
1
0

B

.

(Note that I am ignoring repeated columns, for obvious reasons.) Of course,
in F2, adding something an even number of times results in zero, so the only
interesting values of a and b are 0 and 1 – meaning there are only 4 elements
in the image. Let’s compute each one:

• (a = 0, b = 0). 0
A

1
1

B

+ 0
A

1
0

B

=
A

0
0

B

• (a = 1, b = 0). 1
A

1
1

B

+ 0
A

1
0

B

=
A

1
1

B

• (a = 0, b = 1). 0
A

1
1

B

+ 1
A

1
0

B

=
A

1
0

B

• (a = 1, b = 1).
A

1
1

B

+
A

1
0

B

=
A

0
1

B

.

So we conclude that all four elements of Fü2
2 are in the image. In particular,

f is a surjection.

Remark 4.5.6. One nice thing about working with F2 is that F2 is finite –
unlike Z. Especially as you are starting out playing with abelian groups and
matrices, this can give some sense of solace.


