
Reading 1

Rapid overview of point-set
topology

Recall that a topology on a set X tells us which subsets of X deserve to be
called open. A set equipped with a topology is, as a matter of terminology,
called a topological space – or a space (for short).

The field of Topology1 is about studying topological spaces. Since the
20th century (and thanks especially to Emmy Noether’s contributions to
mathematics as a whole), we now view continuous functions as the main tool
we have for studying topological spaces. Anachronistically, but correctly, we
can view the definition of a topological space as serving to let us define the
notion of continuous function:

Fix a function f between two sets X and Y . If both X and Y are given
topologies, then f is called continuous if preimages of open subsets are open.

The main way to distinguish two spaces is to determine whether they are
homeomorphic – we say that a function f : X æ Y is a homeomorphism if
f is a bijection, f is continuous, and if f

≠1 is continuous. Two spaces are
called homeomorphic if there exists a homeomorphism between them, and
two spaces are equivalent for all intents and purposes if they are homeomor-
phic.

1
In this review, I will write Topology (with a capital T) to mean our field of study. I

will write topology (in lower case) to mean the mathematical term – as in a collection of

open sets (see Definitions 1.3.1 and 1.3.4).
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1.1 What an undergraduate topology class
should teach

Now, a typical point-set topology class should teach us (roughly speaking)
four things:

1. Examples.

2. Constructions.

3. Facts.

4. Techniques.

1.1.1 Examples
The main example of a topological space you should be familiar with is
Euclidean space: For every n Ø 0, Rn is a topological space with the so-
called standard topology: A subset of Rn is open if and only if it can be
written as a union of open balls. (See Section 1.4 for slightly more details.)
You should make sure you understand the dependence on n – a shape that
looks open as a subset of Rn is rarely an open subset of Rm for m ”= n.

The main example of continuous functions you should be familiar with are
those between Euclidean spaces. Indeed, from multivariable calculus (Calcu-
lus III) you should be able to name lots of continuous functions with domain
Rm and codomain Rn for 1 Æ m, n Æ 3. (Of course, in ordinary Calculus,
you learn about continuous functions with m = n = 1.) As a general rule, if
a function is famous enough to have a name – cos, sin, tan log, ln, exponenti-
ation, polynomials, inverse trig functions, et cetera – then it is continuous.

1.1.2 Constructions
By a construction, I mean a way to produce new examples from old.

The three main constructions for topological spaces I want you to be
familiar with are quotient spaces, product spaces, and subspaces. The last
one of these is especially important for the beginning of this course – it
renders any subset of Rn into a topological space. (See Definition 1.3.9.)
Quotient spaces will be more important in the second half of this course.
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Each of these constructions have advantages and disadvantages. For ex-
ample, it is easy to construct continuous functions out of quotient spaces2,
but sometimes tedious to make continuous functions into them3. Dually, it
is easy to construct continuous functions into product spaces, but often hard
to construction continuous functions out of them. Thankfully, it is easy to
construct continuous functions into and out of subspaces.

The main reason all these constructions are taught: they just show up.
Indeed, some spaces are most easily described as one construction over an-
other. On the other hand, the spaces that can be described through more
than one construction are incredibly rich.

The main construction of continuous functions come in the following fla-
vors: addition and multiplication (when the functions land in R), composition,
and universal properties. The first two tell you how to make new continuous
functions out of known ones – add, multiply, or compose known continuous
functions to get new ones. The last construction (universal properties) is
the (philosophically) most sophisticated. Universal properties tend to take
continuous functions between known objects and create continuous functions
between the new objects. I stated earlier that certain constructions of spaces
are convenient in di�erent settings. The reason that quotient spaces are con-
venient for constructing functions out of them is because of the universal
property of quotient spaces. It is easy to construct continuous maps into
subspaces because of the universal property of product spaces.

1.1.3 Facts
For reasons that only become evident through experience, certain properties
of spaces are useful – they identify the salient strategies used in certain proofs.
These properties help us to classify spaces into di�erent kinds of “species.”
Whether a space is compact or Hausdor�, for example, greatly influences how
a space behaves. Here we give three facts that typically appear in a standard
course in point-set topology:

1. If a space X is a subset of Rn, it is compact4 if and only if X is bounded
and closed5 as a subset of Rn. (This is the Heine-Borel Theorem.)

2
That is, it is easy to construct functions whose domains are quotient spaces.

3
It is more tedious to construct functions whose codomains are quotient spaces.

4
When endowed with the subspace topology

5
See Definition ??
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2. Any subspace of a Hausdor� space is Hausdor�.

3. If f : X æ Y is a continuous bijection from a compact space to a
Hausdor� space, f is in fact a homeomorphism.

There are of course many other useful facts in topology; we don’t recall
more here.

1.1.4 Techniques
These are the hardest to teach. By definition, topology deals with intersec-
tions, unions, and preimages. So the rawest techniques in topology involve
computations with these ideas. But proper practice would teach you how to
work with open covers, bases for topologies, and so forth.

Now, whether these techniques are needed depends on the direction one
heads in. In this course, we will build upward – meaning we will use facts
and objects of point-set topology, but we will rarely have to prove results
using techniques of point-set topology.

Indeed, the kinds of techniques we will use in this course will look very,
very di�erent.

1.2 Euclidean space
In our class, we will talk about Euclidean space a lot. Recall that n-dimension
Euclidean space is often denoted Rn. By definition, Rn is the set of all ordered
n-tuples

(x1, x2, . . . , xn≠1, xn)

where each xi is a real number. If we say that x or y or p is an element of
Rn, the ith coordinates of these elements will be denoted as xi, or as yi, or
as pi, respectively.

Example 1.2.1. (
Ô

2, fi, 1, ≠2,
3
4) is an element of R5.

Remark 1.2.2. In general, it is very di�cult to visualize anything in R4
,R5

,R6,
et cetera. Indeed, subsets of R3 are hard enough to visualize! It is always a
good idea to try to visualize something, so you should – but don’t be discour-
aged if you cannot. The power of mathematics is that we can prove things
about objects we cannot even see.
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As indicated above, we often write an element of Rn as (x1, . . . , xn), with
the ith coordinate being denoted by xi. Note we are not using (x, y) notation
for elements of R2 (though we sometimes might, out of habit). This is because
as we go to higher dimensions, we will run out of letters.

Example 1.2.3. Here is an example application of this notation. We can
define a function

f : R4 æ R, (x1, x2, x3, x4) ‘æ 3x2 ≠ x1x3 + 7x
2
4 ≠ 9.

Then, even though we cannot visualize f , we can evaluate it. We have:

• f(0, 0, 0, 0) = ≠9.

• f(1, 0, 1, 0) = ≠10.

• f(2, 4, 2, 3) = 3 · 4 ≠ 2 · 2 + 7 · 9 ≠ 9 = 12 ≠ 4 + 63 ≠ 9 = 62.

• f(fi, e,
Ô

2, 1) = 3e ≠ fi
Ô

2 ≠ 2.

1.3 Basic definitions
For the record, let’s list some basic definitions. Along with what you’ve
already read, these definitions will form the foundation for the first two weeks
of this course.

Definition 1.3.1. Fix a set X. A topology on X is a subset T of the power
set of X satisfying the following conditions:

1. The empty set and X itself are elements of T.

2. For any finite collection of elements of T, their intersection is an element
of T.

3. For any (finite or otherwise) collection of elements of T, their union is
an element of T.

Definition 1.3.2. A topological space, or space for short, is a set equipped
with a topology on that set.
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Notation 1.3.3. As a matter of rigor, a topological space is a pair (X,T)
where X is a topology and T is a topology on X. Regardless, out of sloth,
we will often write “let X be a topological space” with the data of T left
implicit in the writing.

Definition 1.3.4. Let X be a topological space. We say that a subset of X

is open if it is an element of the topology on X.

Definition 1.3.5. Fix a function f : X æ Y . Recall that for any subset V

of Y , the preimage of V is the set of all elements x œ X for which f(x) œ V .

Notation 1.3.6. Confusingly, we often write f
≠1(V ) for the preimage of V .

This is confusing precisely because “f
≠1” is not necessarily a function in this

notation – after all, f need not be a bijection to define preimage.

Definition 1.3.7. Let X and Y be topological spaces. A function f : X æ Y

is said to be continuous if for every open open subset of Y , its preimage under
f is open in X.

Definition 1.3.8 (Open cover). Let X be a topological space. An open cover
of X is a collection6 of open subsets {Ui}iœI for which the union t

iœI Ui is
all of X.

Definition 1.3.9 (Subspace topology). Let X be a topological space and fix
A µ X. We say that a subset of A is open (in the subspace topology) if and
only if it it is the intersection of A with some open subset of X.

Definition 1.3.10 (Closed subset). Let X be a topological space. We say
that a subset V µ X is closed if the complement of V is open.

Warning 1.3.11. You heard this many times in your point-set topology
class, but it is worth repeating: “Open” and “closed” are not opposite no-
tions. A subset can be both closed and open. A subset can be neither closed
nor open. A subset can be open and not closed. A subset can be closed and
not open.

6
Note that this collection is indexed by a set I, and I may be finite or infinite.
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1.4 Some elaborations on Euclidean space
Let us elaborate a little on the standard topology of Rn to make sure we are
on the same page. Given an element x œ Rn and a positive real number r,
the open ball centered at x of radius r is the set

Ball(x, r) := {y œ Rn | dist(x, y) < r}.

Put another way, it is the set of all elements of Rn that are less than distance
r away from x. Recall the distance formula:

dist(x, y) =
Ò

(y1 ≠ x1)2 + (y2 ≠ x2)2 + . . . + (yn ≠ xn)2.

By taking squares of both sides of the distance formula, the open ball can
equivalently be defined as

Ball(x, r) = {y œ Rn |
nÿ

i=1
(yi ≠ xi)2

< r
2}.

Example 1.4.1. In R, the open ball of radius r centered at x is the open
interval (x ≠ r, x + r).

By definition of the standard topology (Section 1.1.1) a subset of R is
open (in the standard topology) if and only if the subset can be written as
a union of open intervals of finite width. Here are some examples of open
subsets of R:

• The empty set (which is a union of “no” – or zero many – open inter-
vals).

• Any open interval (a, b) for a < b.

• Any union of open intervals t
iœI(ai, bi). For example:

. . .
·

(≠3, ≠2)
·

(≠2, ≠1)
·

(≠1, 0)
·

(0, 1)
·

(1, 2)
·

. . . .

Here, ‡ means “union of sets having no intersections.” That is, this
symbol is the symbol for “disjoint union.” Notice this union is allowed
to have infinitely many summands.

• Any interval of the form (≠Œ, a) or (a, Œ).

• R itself.


