Lecture 25

Taylor Polynomials

25.1 Derivatives of polynomials are easy to compute at certain places

Exercise 25.1.1. Consider the function

$$
T(x)=5+(x-\pi)+\frac{9}{2}(x-\pi)^{2}+\frac{17}{6}(x-\pi)^{3}+\frac{19}{24}(x-\pi)^{4} .
$$

This is a degree four polynomial.
(a) Compute $T(\pi)$. Hint: Do not expand out the powers of $x-\pi$.
(b) Compute $T^{\prime}(\pi)$. Hint: Do not expand out the powers of $x-\pi$.
(c) Compute $T^{\prime \prime}(\pi)$. Hint: ... Guess the hint.
(d) Compute the third derivative of T at $x=\pi$. (The third derivative is the derivative of the second derivative.) This is sometimes written $T^{\prime \prime \prime}(3)$, or sometimes $T^{(3)}(\pi)$.
(e) Compute $T^{(4)}(\pi)$. That is, compute the fourth derivative of T at $x=\pi$.

Possible solution. (a) Plug in $x=\pi$ into the polynomial to obtain:

$$
\begin{aligned}
T(\pi) & =5+(\pi-\pi)+\frac{9}{2}(\pi-\pi)^{2}+\frac{17}{6}(\pi-\pi)^{3}+\frac{19}{24}(\pi-\pi)^{4} \\
& =5
\end{aligned}
$$

(b) As usual, to evaluate the derivative at $x=\pi$ we first take the derivative of T. Without multiplying out the powers of $x-\pi$, we may simply apply the chain rule:

$$
T^{\prime}(x)=0+1+\frac{9}{2} \cdot 2(x-\pi)+\frac{17}{6} \cdot 3(x-\pi)^{2}+\frac{19}{24} \cdot 4(x-\pi)^{3} .
$$

Now if we plug in $x=\pi$, we obtain

$$
T^{\prime}(\pi)=1
$$

(c) Let us now take the second derivative of T. Without multiplying out the powers of $x-\pi$, we apply the chain rule:

$$
T^{\prime \prime}(x)=0+\frac{9}{2} \cdot 2+\frac{17}{6} \cdot 3 \cdot 2(x-\pi)+\frac{19}{24} \cdot 4 \cdot 3(x-\pi)^{2} .
$$

Now if we plug in $x=\pi$, we obtain

$$
\begin{aligned}
T^{\prime}(\pi) & =0+\frac{9}{2} \cdot 2+\frac{17}{6} \cdot 3 \cdot 2(\pi-\pi)+\frac{19}{24} \cdot 4 \cdot 3(\pi-\pi)^{2} \\
& =9
\end{aligned}
$$

(d) Let us now take the third derivative of T. Without multiplying out the powers of $x-\pi$, we apply the chain rule:

$$
T^{\prime \prime}(x)=0+\frac{17}{6} \cdot 3 \cdot 2+\frac{19}{24} \cdot 4 \cdot 3 \cdot 2(x-\pi)
$$

Now if we plug in $x=\pi$, we obtain

$$
\begin{aligned}
T^{\prime}(\pi) & =\frac{17}{6} \cdot 3 \cdot 2 \\
& =17
\end{aligned}
$$

(e) Let us now take the fourth derivative of T. Without multiplying out the powers of $x-\pi$, we apply the chain rule:

$$
T^{\prime \prime}(x)=\frac{19}{24} \cdot 4 \cdot 3 \cdot 2
$$

Now if we plug in $x=\pi$, we obtain

$$
\begin{aligned}
T^{\prime}(\pi) & =\frac{19}{24} \cdot 4 \cdot 3 \cdot 2 \\
& =19
\end{aligned}
$$

Exercise 25.1.2. Suppose you have a degree four polynomial of the form

$$
T(x)=b_{0}+b_{1}(x-a)+\frac{b_{2}}{2}(x-a)^{2}+\frac{b_{3}}{3!}(x-a)^{3}+\frac{b_{4}}{4!}(x-a)^{4}
$$

where $a, b_{0}, b_{1}, b_{2}, b_{3}, b_{4}$ are real numbers.
(Some notes:

- Remember that 4 ! is a "factorial." It is a shorthand for the expression $4 \times 3 \times$ 2×1. Likewise, $3!=3 \times 2 \times 1$.
- If it helps, you can choose to replace b_{0}, b_{1}, and so forth with concrete numbers like 12 or π. But I want you to get practice reasoning without making those kinds of substitutions. The important point here is that $a, b_{0}, b_{1}, b_{2}, b_{3}, b_{4}$ are not numbers that change with x; they are constants.

End of notes.)
(a) Compute $T(a)$.
(b) Compute $T^{\prime}(a)$.
(c) Compute $T^{\prime \prime}(a)$.
(d) Compute $T^{(3)}(a)$.
(e) Compute $T^{(4)}(a)$.

Exercise 25.1.3. Suppose somebody tells you they have a function $f(x)$, and that

- $f(0)=1$.
- $f^{\prime}(0)=0$.
- $f^{\prime \prime}(0)=-1$.
- $f^{(3)}(0)=0$.
- $f^{(4)}(0)=1$.
(a) Can you find a degree four polynomial $T(x)$ such that
- $f(0)=T(0)$,
- $f^{\prime}(0)=T^{\prime}(0)$,
- $f^{\prime \prime}(0)=T^{\prime \prime}(0)$,
- $f^{(3)}(0)=T^{(3)}(0)$, and
- $f^{(4)}(0)=T^{(4)}(0)$?
(b) Would you expect the graphs of $T(x)$ and $f(x)$ to be related in any way? Why or why not?

25.2 The definition of a Taylor polynomial

Definition 25.2.1. Let f be a function, and choose a real number a. The $n t h$ degree Taylor polynomial of f at a is the degree n polynomial T_{n} satisfying

- $T(a)=f(a)$,
- $T^{\prime}(a)=f^{\prime}(a)$,
- ...,
- $T^{(n)}(a)=f^{(n)}(a)$.

In other words, T_{n} is the polynomial whose value, derivative, second derivative, ..., and nth derivative at a all agree with those of f at a.

Based on the previous page, we know that the nth degree Taylor polynomial can be written as

$$
T_{n}(x)=b_{0}+b_{1}(x-a)+\frac{b_{2}}{2}(x-a)^{2}+\ldots+\frac{b_{n}}{n!}(x-a)^{n}
$$

where $b_{1}=f^{\prime}(a), b_{2}=f^{\prime \prime}(a), \ldots, b_{n}=f^{(n)}(a)$. For example, the coefficient in front of $(x-a)^{4}$ is given by $\frac{f^{(4)}(a)}{4!}$.

And, on the previous page, you were finding the 4th degree Taylor polynomial to some mystery function f.

25.3 Example: cosine

Let $f(x)=\cos (x)$. We'll find the Taylor polynomials of f at $a=0$. We'll also plot the graph of T_{n} next to the graph of $\cos (x)$ to compare.

Exercise 25.3.1. Find the degree 0 and degree 1 Taylor polynomials of $f=\cos$ at $a=0$.

Possible solution. Because $f(0)=1$ and $f^{\prime}(0)=0$, we can find the degree 0 and degree 1 Taylor polynomials as follows:

$$
\begin{aligned}
T_{0}(x) & =1 \\
T_{1}(x) & =1+\cos ^{\prime}(0)(x-0) \\
& =1+0(x-0) \\
& =1
\end{aligned}
$$

(Note that even though T_{1} is called "degree one," it doesn't have a linear term, because the coefficient in front of $(x-a)$ turns out to be zero.)

Here is the graph of T_{0} and T_{1} (in dashed red) along with the graph of $\cos (x)$ (in solid blue):

Exercise 25.3.2. Find the degree 2 and degree 3 Taylor polynomials of $f=\cos$ at $a=0$.

Possible solution. Because $f^{\prime \prime}(0)=-1$ and $f^{(3)}(0)=0$, we can find the degree 2 and
degree three Taylor polynomials as follows:

$$
\begin{aligned}
T_{2}(x) & =1+0(x-0)+\frac{\cos ^{\prime \prime}(0)}{2}(x-0)^{2} \\
& =1+\frac{-1}{2} x^{2} \\
T_{3}(x) & =1+\frac{-1}{2} x^{2}+\frac{\cos ^{\prime \prime \prime}(0)}{6}(x-0)^{3} \\
& =1+\frac{-1}{2} x^{2}+\frac{0}{6}(x-0)^{3} \\
& =1+\frac{-1}{2} x^{2}
\end{aligned}
$$

(Note that even though T_{3} is called "degree three," it doesn't have a degree three term, because the coefficient in front of $(x-a)^{3}$ turns out to be zero.)

Here is the graph of $T_{2}(x)$ (which happens to be the same as $T_{3}(x)$ in this example) along with the graph of cosine:

Exercise 25.3.3. Find the degree 4 and degree 5 Taylor polynomials of $f=\cos$ at $a=0$.

Possible solution.

$$
\begin{aligned}
T_{4}(x) & =1+\frac{-1}{2} x^{2}+\frac{\cos ^{(4)}(0)}{24}(x-0)^{4} \\
& =1+\frac{-1}{2} x^{2}+\frac{1}{24} x^{4} \\
T_{5}(x) & =1+\frac{-1}{2} x^{2}+\frac{1}{24} x^{4}+0 x^{5} \\
& =1+\frac{-1}{2} x^{2}+\frac{1}{24} x^{4}
\end{aligned}
$$

Here is the graph of T_{4} next to the graph of cosine:

Question. Are the graphs starting to look similar?
Exercise 25.3.4. Find the degree 6 Taylor polynomial of $f=\cos$ at $a=0$.
Possible solution.

$$
\begin{aligned}
T_{6}(x) & =1+0 x+\frac{-1}{2} x^{2}+0 x^{3}+\frac{1}{24} x^{4}+0 x^{5}-\frac{1}{720} x^{6} \\
& =1+\frac{-1}{2} x^{2}+\frac{1}{24} x^{4}+\frac{-1}{720} x^{6}
\end{aligned}
$$

Here is the graph of T_{6} next to the graph of cosine:

The take-away: Taylor polynomials allow you to approximate a complicated function f by a simpler function (a polynomial), just by knowing the higher derivatives of f at a point a. As you can see from the graphs above, these approximations do a very good job near a. Further away from a, the polynomials may behave very differently from f.

25.4 Application: Approximating $\cos (0.5)$

Most of us do not know what $\cos (0.5)$ is off the top of our heads. But we saw in our previous drawings that the Taylor polynomials have graphs that are very similar to the graph of $\cos (x)$ when we are near $a=0$.

So what if we evaluate $T_{n}(0)$?
Exercise 25.4.1. (a) For each of the Taylor polynomials $T_{0}, T_{1}, T_{2}, \ldots$ you computed for \cos at $a=0$, compute $T_{n}(0.5)$. You may use a calculator.
(b) Try comparing these to what your calculator says $\cos (0.5)$ is. I think you'll be pleased!

Possible solution. - $T_{0}(0.5)=1$

- $T_{2}(0.5)=1+\frac{-1}{2}(0.5)^{2}=0.875$
- $T_{4}(0.5)=0.87760416667$
- $T_{6}(0.5)=1+\frac{-1}{2}(0.5)^{2}+\frac{1}{24}(0.5)^{4}+\frac{-1}{720}(0.5)^{6}=0.87758246528$
- $T_{8}(0.5)=1+\frac{-1}{2}(0.5)^{2}+\frac{1}{24}(0.5)^{4}+\frac{-1}{720}(0.5)^{6}+\frac{1}{40320}(0.5)^{8}=0.87758256216$

25.5 What are Taylor polynomials good for, and when?

Taylor polynomials do a great job of taking a complicated function f, and producing a polynomial that very closely approximates f. The input of the number a guarantees a polynomial that closely approximates f near a. And in general, the bigger-degree Taylor polynomial we consider, the better the approximation.

The one word of caution is that you should only consider those a for which you can already compute the (higher) derivatives of f at a. For example, to even write down the 0th degree Taylor polynomial of cos at $a=1$, you would need to know $\cos (1)$. But this is not a number we know off the top of our heads (and to even compute it would require a lot of effort). Likewise, to write down the first degree Taylor polynomial, we would further need to know the derivative of cos at 1 - that is, you'd need to know $-\sin (1)$. This is again a number we don't know very accurately without some effort.

But now, I want you to believe that things like $\cos (1)$ are not magical numbers that calculators produce via an unknown mechanism. You could now go home, and try to approximate $\cos (1)$ by taking higher- and higher-degree Taylor polynomials for \cos at $a=0$. How cool is that?

Also for fun: Check out this website to have fun with Taylor polynomials for different functions:
https://www.geogebra.org/m/s9SkCsvC.

