25.6 Lab: Taylor polynomials

Exercise 25.6.1. Let $f(x)=\ln x$.
(a) Compute $f(1)$.
(b) Compute $f^{\prime}(1)$.
(c) Compute $f^{\prime \prime}(1)$.
(d) Compute $f^{(3)}(1)$.
(e) Compute $f^{(4)}(1)$.
(f) Write the fourth degree Taylor polynomial $T_{4}(x)$ of $\ln x$ at $a=1$.
(g) Use a calculator to compute $T_{4}(1.1)$.
(h) Have a calculator compute $\ln (1.1)$.
(i) How close are the two answers you got?
(j) Try comparing T_{4} to ln by plugging in numbers like $1.2,1.3$, or 1.01 , or 1.001 .

Would you say that T_{4} does a good job of approximating \ln ?

Possible partial solution. Here is the degree 2 Taylor polynomial:

$$
T_{2}(x)=0+(x-1)+\frac{-1}{2}(x-1)^{2} .
$$

Here is the degree 4 Taylor polynomial:

$$
T_{4}(x)=0+(x-1)+\frac{-1}{2}(x-1)^{2}+\frac{1}{6}(x-1)^{3}-\frac{1}{24}(x-1)^{3}
$$

And, for fun, here are graphs of various Taylor polynomials for $\ln (x)$ at $a=1$,
graphed along with $\ln (x)$:

Exercise 25.6.2. Let $f(x)=\sqrt{x}$.
(a) Compute $f(4)$.
(b) Compute $f^{\prime}(4)$.
(c) Compute $f^{\prime \prime}(4)$.
(d) Compute $f^{(3)}(4)$.
(e) Compute $f^{(4)}(4)$.
(f) Write the fourth degree Taylor polynomial $T_{4}(x)$ of \sqrt{x} at $a=4$.
(g) Use a calculator to compute $T_{4}(5)$.
(h) Have a calculator compute $\sqrt{5}$.
(i) How close are the two answers you got?
(j) Try comparing T_{4} to \sqrt{x} by plugging in numbers like 4.1, 4.2, 4.3. Would you say that T_{4} does a good job of approximating \sqrt{x} ?
(k) Try comparing $T_{4}(5), T_{4}(6), T_{4}(7)$ to the square roots of $5,6,7$. Would you say that T_{4} does a good job of approximating \sqrt{x} at these values of x ?

Possible partial solution. Here is the degree 4 Taylor polynomial $T_{4}(x)$, not simplified (to expose a bit of the underlying work):
$2+\frac{1}{2} \cdot \frac{1}{2}(x-4)+\frac{-1}{2} \cdot \frac{1}{2} \cdot \frac{1}{8} \cdot \frac{1}{2}(x-4)^{2}+\frac{-3}{2} \cdot \frac{-1}{2} \cdot \frac{1}{2} \cdot \frac{1}{16} \cdot \frac{1}{6}(x-4)^{3}+\frac{-5}{2} \cdot \frac{-3}{2} \cdot \frac{-1}{2} \cdot \frac{1}{2} \cdot \frac{1}{32} \cdot \frac{1}{24}(x-4)^{4}$.

