
Lecture 23

Limits involving Œ

Remark 23.0.1. We will be using the symbol Œ a lot. This symbol stands for
“infinity.” I want you to know that the way we use Œ in calculus class is only one

way to talk about Œ in mathematics.
For example, there are “infinitely many” integers; this notion of infinity answers

the question “how many?”. The “how many” notion is subtly, but definitely, di�erent
from the notion of Œ that we’ll use in calculus, which is more dynamical—our notion
answers the question “are our numbers eventually getting bigger than any value we
specify?”

23.1 Infinity, in our class

23.1.1 Where are Œ and ≠Œ?

This is controversial among some calculus instructors; but in my class, we will som-
times treat Œ and ≠Œ as though they are “numbers.” In fact, you can imagine that
I’ve added two ends to the number line:

0≠Œ Œ

So for example, between 0 and Œ lies every positive real number. Between ≠Œ and
0 lies every negative real number. Œ is larger than any number; ≠Œ is lesser than
any number.

Remark 23.1.1. This should give you some idea for what it means to approach

infinity. It means that, for any point T on the real line, you eventually surpass and
stay larger than T . Likewise, for you to approach ≠Œ means that, for any number T
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4 LECTURE 23. LIMITS INVOLVING Œ

on the real line, you eventually become more negative than, and stay more negative
than, T .

Indeed, Œ and ≠Œ will show up in two ways when we study limits, just as other
numbers do. For example, the number 5 shows up in two di�erent ways below:

lim
xæ5

f(x) = fi, lim
xæfi

g(x) = 5.

Likewise, Œ can be a place where we ask whether a limit exists, and it can also be
a value that a function approaches.

In either case, you can think of approaching Œ as always approaching Œ from
the left. And many intuitions you have about understanding, say, limxæ5≠ – a limit
as we approach a location from the left – will hold true for limxæŒ.

Likewise, ≠Œ is always approached from the right. See also Remark 23.6.2.

23.2 Limits equaling infinity

We’ll talk about limits equaling Œ via examples.

Example 23.2.1. Consider the function f(x) = 1/x
2. Here’s a graph of it:

As you know, f(x) = 1/x
2 is not defined at x = 0. However, does f seem to “want”

to do something as x approaches zero?
As you see from the graph, f is “spiking” at x = 0, and becoming larger and

larger. In fact, if there’s a height H that you want to surpass, all you have to do is
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make sure that x is small enough. For every small-enough x, we know f(x) will be
larger than H.

Thus, we say:
lim
xæ0

f(x) = Œ.

This is our first use of Œ in calculus class!

Warning 23.2.2. So what does it mean for the limit to equal infinity? It turns out
for the value of a function f at a to equal infinity does not mean that values keep
increasing and increasing in some naive sense.

Rather, it means: For any height H you want to surpass, if you are close enough
to a, you are guaranteed that the value of f is above H.

We can talk about left and right limits equaling Œ, too.

Exercise 23.2.3. Consider the function f(x) = 1/x. Here’s a graph of it:

Evaluate limxæ0+ f(x) and limxæ0≠ f(x).
Now evaluate limxæ0 f(x).

Possible solutions. As you can see, as we approach the origin from the right, the
graph of f is spiking upward again. We can talk about this righthand limit:

lim
xæ0+

f(x) = Œ.
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However, as we approach x = 0 from the left, the graph of f is spiking downward,
and f is approaching ≠Œ. Thus, we say:

lim
xæ0≠

f(x) = ≠Œ.

Note that the lefthand limit and the righthand limit do not agree. Just like limits
for real numbers (and not ±Œ), because the two one-sided limits do not agree, we
can say:

lim
xæ0

f(x) does not exist.

Exercise 23.2.4. Consider the function f(x) = 1/(x ≠ 0.2). Here’s a graph of it:

Evaluate
lim

xæ0.2+
, lim

xæ0.2≠
, lim

xæ0.2
.

Possible solution. As you can see from the graph, as we approach 0.2 from the right,
the graph of f is spiking upward again. So

lim
xæ0.2+

f(x) = Œ.

However, as we approach x = 0.2 from the left, the graph of f is spiking downward,
and f is approaching ≠Œ. Thus, we say:

lim
xæ0.2≠

f(x) = ≠Œ.
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Note that the lefthand limit and the righthand limit do not agree. Just like limits
for real numbers (and not ±Œ), because the two one-sided limits do not agree, we
can say:

lim
xæ0.2

f(x) does not exist.

Remark 23.2.5. There is nothing special about 0.2. In fact, for any real number
C, we have that

lim
xæC+

1
x ≠ C

= Œ, lim
xæC≠

1
x ≠ C

= ≠Œ, lim
xæC

1
x ≠ C

does not exist.

23.3 Arithmetic with Œ and ≠Œ
Of course, you should be able to add/subtract/multiply/divide numbers. Here are
the basic rules you need to remember; they are what you would have guessed. (Below,
remember that Œ and ≠Œ are NOT real numbers.)

• Addition and multiplication are still commutative.

Here are the rules involving addition and subtraction:

• If x is a real number, x + Œ = Œ and x + (≠Œ) = (≠Œ).1

• Œ + Œ = Œ and (≠Œ) + (≠Œ) = (≠Œ).

When taking products and quotients, we must never involve zero with ±Œ:

• If x is a positive real number, x ◊ Œ = Œ and x ◊ (≠Œ) = (≠Œ).

• If x is a negative real number, x ◊ Œ = ≠Œ and x ◊ (≠Œ) = Œ.

• If x is a positive real number, Œ/x = Œ and (≠Œ)/x = (≠Œ).

• If x is a negative real number, Œ/x = ≠Œ and (≠Œ)/x = Œ.

• If x is a real number with x ”= 0, then x/Œ = 0 and x/(≠Œ) = 0.

• Œ ◊ Œ = Œ and Œ ◊ (≠Œ) = (≠Œ) and (≠Œ) ◊ (≠Œ) = Œ.
1
In particular, Œ ≠ x = Œ and (≠Œ) ≠ x = (≠Œ).
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Undefined expressions: Finally, just as you cannot divide a real number by zero,
there are certain operations that are undefined when involving ±Œ:

• Œ - Œ and ≠Œ + Œ are undefined.

• Œ/Œ and ≠Œ/Œ and Œ/(≠Œ) and (≠Œ)/(≠Œ) are all undefined.

• 0 ◊ Œ and 0 ◊ (≠Œ) are undefined.

• 0/Œ and 0/(≠Œ) and Œ/0 and (≠Œ)/0 are undefined.

Remark 23.3.1 (A note to educators). That one can do “arithmetic” with ±Œ is a
reflection that the operations +, ≠, ◊ (and ÷) usually defined on R◊R (and R◊(R\
{0}) extends continuously to a subset of the compactification [≠Œ, Œ] ◊ [≠Œ, Œ].

23.4 Limit rules, revisited (this time with Œ)

Once you know how to add/multiply/divide/subtract with Œ, and once you know
the basic limits, you can begin to compute limits of more complicated functions.

Here are the basic limit laws for infinity; they are like the old ones, just with
more caveats about being careful:

1. (New: Limits of 1/(x ≠ C)). For any real number C, we have that

lim
xæC≠

1
x ≠ C

= ≠Œ, and lim
xæC+

1
x ≠ C

= Œ.

(Make sure to take a look at Example 23.2.4 if you haven’t yet.)

2. (Scaling law). When the righthand side is defined, for any real number m, we
have

lim
xæa

mf(x) = m lim
xæa

f(x).

New point of caution: The righthand side is undefined if m = 0 and if
limxæa f(x) = ±Œ.

3. (Puncture law). If f(x) = g(x) away from a, then

lim
xæa

f(x) = lim
xæa

g(x).
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4. (Product law) We have that

lim
xæa

(f(x) · g(x)) = lim
xæa

f(x) · lim
xæa

g(x).

New point of caution: Importantly, the righthand side is not defined when
multiplication is not defined—for example, 0 · Œ is undefined for us. When
the righthand side is undefined, you have to try something di�erent from the
product rule to determine the limit.

5. (Quotient law) We have that

lim
xæa

(f(x)
g(x) ) = limxæa f(x)

limxæa g(x) .

New point of caution: Importantly, the righthand side is not defined when
division is not defined—for example, 0/Œ is undefined. When the righthand
side is undefined, you have to try something di�erent from the quotient rule to
determine the limit.

Remark 23.4.1. Limit laws also work for one-sided limits! This is a good
thing. For example,

lim
xæa+

(f(x) · g(x)) = lim
xæa+

f(x) · lim
xæa+

g(x).

Exercise 23.4.2. Using your knowledge of (one-sided) limits of 1/x, the product
law, and arithmetic with Œ, establish that

lim
xæ0

1
x2 = 0.

This is an example you should memorize the result of.

Possible solution. It su�ces to compute both one-sided limits, and to show that they
are the same. Here’s one:

lim
xæ0+

1
x2 = lim

xæ0+
( 1
x

· 1
x

) (23.4.1)

= lim
xæ0+

1
x

· lim
xæ0+

1
x

(23.4.2)

= Œ · Œ (23.4.3)
= Œ. (23.4.4)
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The first line is just algebra. The next line is using the product rule for one-sided
limits. Then we are using the fact that we know already the one-sided limits for 1/x.
The last line follows from our rules about arithmetic with Œ.

And here’s the other one-sided limit:

lim
xæ0≠

1
x2 = lim

xæ0≠
( 1
x

· 1
x

) (23.4.5)

= lim
xæ0≠

1
x

· lim
xæ0≠

1
x

(23.4.6)

= (≠Œ) · (≠Œ) (23.4.7)
= Œ. (23.4.8)

In sum, we see that both one-sided limits agree, so 1/x
2 has a limit at 0. We can

conclude:

lim
xæ0

1
x2 = Œ.

Remark 23.4.3 (Did I do something wrong if I get a non-sense answer?). The first
approach most of us take at evaluating limits is trying to “plug the limit in.” For
example, to compute the previous limit, you may have just tried to set x equal to
0. The issue, of course, is that then you have an expression involving a division by
zero.

You are allowed to get stuck like that. Just know that when you end up at a
division by zero, you’ve simply tried one thing that does not work. So it is time to
try another thing.

This happens a lot with limits. The first few things we try often don’t work. So
we just have to try another way.

Exercise 23.4.4. Compute

lim
xæ0+

1 + x

4x2 .
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Possible solution. The fastest approach is to use the product law:

lim
xæ0+

1 + x

4x2 = lim
xæ0+

1 + x

1 · lim
xæ0+

1
4x2 (23.4.9)

= 1 · lim
xæ0+

1
4x2 (23.4.10)

= 1 · 1
4 lim

xæ0+

1
x2 (23.4.11)

= 1
4 lim

xæ0+

1
x2 (23.4.12)

= 1
4Œ (23.4.13)

= Œ. (23.4.14)

The first line is the product law. (23.4.11) is computing the limit of 1+x
1 . (This is

something you already knew how to do.) (23.4.12) is the scaling law. The next line
is algebra. (23.4.13) follows from our knowledge of the limit of 1/x

2 at 0. The last
line is arithmetic using Œ.

Here is a di�erent, very tedious approach:

lim
xæ0+

1 + x

4x2 = lim
xæ0+

3 1
4x2 + x

4x2

4
(23.4.15)

= lim
xæ0+

1
4x2 + lim

xæ0+

x

4x2 (23.4.16)

= 4 lim
xæ0+

1
x2 + lim

xæ0+

x

4x2 (23.4.17)

= 4 · Œ + lim
xæ0+

x

4x2 (23.4.18)

= Œ + lim
xæ0+

x

4x2 (23.4.19)

= Œ + lim
xæ0+

1
4x

(23.4.20)

= Œ + 1
4 lim

xæ0+

1
x

(23.4.21)

= Œ + 1
4 · Œ (23.4.22)

= Œ + Œ (23.4.23)
= Œ. (23.4.24)

The first line is algebra, and the next line is the addition rule. Note that we don’t
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know whether the sum will be well-defined2 at this stage, but we proceed crossing our
fingers. Then I kept simplifying the lefthand term in the summation, knowing that
lim 1/x

2 = Œ and using the scaling law. Line (23.4.20) follows from the puncture
law. Then I use the scaling law, and then my knowledge of limxæ0+

1
x . The last few

lines are following the arithmetic of Œ.

Exercise 23.4.5. Let’s compute

lim
xæ3+

5x

x ≠ 3 .

Possible solution. We have the following string of equalities:

lim
xæ3+

5x

x ≠ 3 = lim
xæ3+

5x · lim
xæ3+

1
x ≠ 3 (23.4.25)

= 15 · lim
xæ3+

1
x ≠ 3 (23.4.26)

= 15 · Œ (23.4.27)
= Œ (23.4.28)

The first equality is the product law for limits—note that we did not know3 that we
are allows to use it until the second-to-last line, but we tried computing it anyway
(and got lucky that it worked!). (23.4.26) is evaluating the limit for 5x, which we
knew how to do already. (23.4.27) is using our knew limit law for functions of the
form 1/(x≠C). Note that C is also where we’re taking the limit—this is an important
part of the law.

The last equality is using the arithmetic rules for Œ.

Exercise 23.4.6. Compute

lim
xæ3≠

5x

x ≠ 3 .

2
For example, if at the end we find a sum of the form Œ ≠ Œ, we are at a loss—this expression

is not defined.
3
We did not know we could use it because we did not know whether the product limxæ3 5x ·

limxæ3+ 1
x≠3 would yield something non-sensical like 0 · Œ upon simplification. When the product

is sensible, we can safely rely on the product law.
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Proof. We have the following string of equalities:

lim
xæ3≠

5x

x ≠ 3 = lim
xæ3≠

5x · lim
xæ3≠

1
x ≠ 3 (23.4.29)

= 15 · lim
xæ3≠

1
x ≠ 3 (23.4.30)

= 15 · ≠Œ (23.4.31)
= ≠Œ (23.4.32)

The first equality is the product law for limits—note that we did not know4 that we
are allows to use it until the second-to-last line, but we tried computing it anyway
(and got lucky that it worked!). (23.4.30) is evaluating the limit for 5x, which we
knew how to do already. (23.4.31) is using our knew limit law for functions of the
form 1/(x≠C). Note that C is also where we’re taking the limit—this is an important
part of the law.

The last equality is using the arithmetic rules for Œ.

Exercise 23.4.7. Compute—using the limit laws above—the one-sided limits

lim
xæ3≠

ln x

x ≠ 3 and lim
xæ3+

ln x

x ≠ 3 .

Does limxæ3
ln x
x≠3 . exist?

23.5 Limits at Œ
Exercise 23.5.1. Compute

lim
xæ0+

1
ex ≠ 1 and lim

xæ0≠

1
ex ≠ 1 .

Try to think this through without using the limit laws above—they won’t help.
Does limxæ0

1
ex≠1 exist?

I want to very carefully walk through this last exercise. How would we compute

lim
xæ0+

1
ex ≠ 1?

4
We did not know we could use it because we did not know whether the product limxæ3 5x ·

limxæ3≠
1

x≠3 would yield something non-sensical like 0 · Œ upon simplification. When the product

is sensible, we can safely rely on the product law.
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Clearly the denominator is causing us trouble. The quotient law doesn’t apply be-
cause the limit of the denominator is 0.

However, let’s think about what’s happening to e
x ≠ 1 as x approaches 0 from

the right. When x > 0, we know that e
x

> e
0. In other words, e

x
> 1.

Thus, as x approaches 0 from the right, the denominator remains positive, but
shrinks to zero. (As x approaches 0 from the right, e

x shrinks in size, and e
x becomes

closer and closer to 1 while remaining larger than 1. As a result, e
x ≠ 1 becomes

closer and closer to 0 while remaining positive.)5

So 1
ex≠1 , as we shrink x to 0 from the right, is positive, and growing larger and

larger (because we are dividing 1 by smaller and smaller numbers). This intuition
suggests

lim
xæ0+

1
ex ≠ 1 = Œ.

Likewise, as x approaches 0 from the left, e
x is less than 1, but is growing in size to

1. Thus e
x ≠ 1 is negative, but approaching 0. So we conclude

lim
xæ0+

1
ex ≠ 1 = ≠Œ.

We will see how to compute this more rigorously next time, when we also talk about
limits at x = ±Œ.

23.6 Examples

Exercise 23.6.1. For each of the following functions, determine whether f(x) “ap-
proaches” a particular value as x becomes larger and larger. Drawing a rough sketch
of the graph may be helpful.

(i) f(x) = 1
x .

(ii) f(x) = 2 + 1
x .

(iii) f(x) = x.

(iv) f(x) = sin x.

(v) f(x) = sin x
x .

(vi) f(x) = x sin x.
5
Make sure you understand this!
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Here are the solutions.

(i) f(x) = 1
x .

We see in this example that as x becomes bigger and bigger, 1/x becomes
smaller and smaller; in fact, we can make 1/x as close to 0 as we like, so long
as x is large enough. We write

lim
xæŒ

1
x

= 0.

(ii) f(x) = 2 + 1
x .

We see in this example that as x becomes bigger and bigger, 2 + 1/x becomes
closer and closer to 2 (the height 2 is drawn in dashes above). In fact, we can
make 2 + 1/x as close to 2 as we like, so long as x is large enough. We write

lim
xæŒ

2 + 1
x

= 0.

(iii) f(x) = x.
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In this example, we see that f(x) = x becomes bigger and bigger as x does. In
fact, we can say the following: If we want f to be larger than some number T ,
we just need to ensure that x is larger than T . We say

lim
xæŒ

x = Œ.

(iv) f(x) = sin x.

This is a tricky example, but we see that no matter how large x is, f(x) could
be any number between -1 and 1. And there is no big number that guarantees
that “so long as x is bigger than this big number, f(x) will be close to some
limiting value.” Thus, we say

lim
xæŒ

sin(x) does not exist .

(v) f(x) = sin x
x .

This is di�erent. f still seems to oscillate, but the f is approaching values
closer and closer to 0 as x grows. Indeed, we can guarantee f to be ‘-close to
0 so long as x is large enough. We say

lim
xæŒ

sin x

x
= 0.
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(vi) f(x) = x sin x.
In this example, f(x) displays interesting behavior as x grows larger and larger.
f oscillates, and more wildly. Importantly, f does not approach infinity as x

grows. Here is why: To approach infinity, we must guarantee that for any T ,
f is larger than T so long as x is large enough. But regardless of how big we
require x to be, there is a possibility that f(x) is less than T—in fact, f(x)
could even be negative!
So we say

lim
xæŒ

x sin(x) does not exist.

Remark 23.6.2 (Are there no “one-sided” limits at infinity?). You may have noticed
we have not dicussed one-sided limits when we approach Œ or ≠Œ. A better way
to think about this is that all limits at Œ are in some sense one-sided, in that

lim
xæŒ

f = lim
xæŒ≠

f.

Indeed, there is no sense in which x can approach Œ “from the right.” Likewise, you
should think of a limit at ≠Œ as one-sided, too:

lim
xæŒ

f = lim
xæŒ+

.

Example 23.6.3. This is an important example you need to know. Look at
the graph of e

x:

≠2 ≠1 0 1 2 3 4 5
≠100

≠50

0

50

100
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As x approaches ≠Œ (i.e., as x goes to the left), the graph approaches the x-axis.
So

lim
xæ≠Œ

e
x = 0.

As x approaches Œ (i.e., as x goes to the right), the function grows larger and larger,
without bound. So

lim
xæŒ

e
x = Œ.

23.7 Practice with limit laws for infinities

We will be vague about this, but here it is:
Limit laws work for limits involving Œú

with an asterisk: ú so long as all terms are defined.
Exercise 23.7.1. Compute

lim
xæŒ

(x ≠ x
2).

Possible solution. We can try using the addition law. If we do, we find
lim

xæŒ
(x ≠ x

2) = = lim
xæŒ

x ≠ lim
xæŒ

x
2 (23.7.1)

= Œ ≠ Œ !!!!!!! (23.7.2)
The big exclamation marks are a warning: The expression “Œ≠Œ” is not defined.
This means that the limit law gives us no information (just like the quotient law is
inapplicable when the denominator has limit 0). So we tried, and we failed. That’s
okay.

Let’s try something else: The product law. The key observation is to see that
(x ≠ x

2) = x(1 ≠ x).
Then we have:

lim
xæŒ

(x ≠ x
2) = lim

xæŒ
x(1 ≠ x) (23.7.3)

= lim
xæŒ

x · lim
xæŒ

(1 ≠ x) (23.7.4)

= Œ · lim
xæŒ

(1 ≠ x) (23.7.5)

= Œ · (1 ≠ Œ) (23.7.6)
= Œ · (≠Œ) (23.7.7)
= ≠Œ. (23.7.8)
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Exercise 23.7.2. Compute
lim

xæŒ
(x ≠ x

2 + 10).

Possible solution. We can try using the addition law. If we do, we find

lim
xæŒ

(x ≠ x
2 + 10) = = lim

xæŒ
(x ≠ x

2) + lim
xæŒ

10 (23.7.9)

= ( lim
xæŒ

(x ≠ x
2)) + 10. (23.7.10)

But we know this limit in the parentheses! We saw above that the limit was ≠Œ, so
we obtain

lim
xæŒ

(x ≠ x
2 + 10) = ≠Œ + 10 = ≠Œ.

23.8 Limits at ±Œ for polynomials

In fact, repeating the factoring trick and the addition law, you can conclude the
following: You can compute limits at Œ for polynomials by looking at the

highest degree term, and these limits will always be ±Œ. For example,

lim
xæŒ

3x
5 + x

4 ≠ 3x
2 = lim

xæŒ
3x

5 (23.8.1)

= 3( lim
xæŒ

x) · ( lim
xæŒ

x) · ( lim
xæŒ

x) · ( lim
xæŒ

x) · ( lim
xæŒ

x) (23.8.2)

= 3Œ · Œ · Œ · Œ · Œ (23.8.3)
= 3Œ (23.8.4)
= Œ. (23.8.5)

The first equality is using the bolded principle above (you need only look at the
highest degree term of the polynomial when computing limits at ±Œ). The next
line is using the product rule a lot.

As another example,

lim
xæ≠Œ

2x
6 + x

5 ≠ 3x = lim
xæ≠Œ

2x
6 (23.8.6)

= 2( lim
xæ≠Œ

x)6 (23.8.7)

= 2(≠Œ)6 (23.8.8)
= 2Œ (23.8.9)
= Œ. (23.8.10)
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Again, in the first line, I am using that the limit at ±Œ of a polynomial is equal to
the limit of the highest degree term. Note that I got lazy and wrote (≠Œ)6 rather
than (≠Œ) · (≠Œ) · (≠Œ) · (≠Œ) · (≠Œ).

Here is one more examples for your edification:

lim
xæ≠Œ

≠4x
3 + x

2 ≠ x = lim
xæ≠Œ

≠4x
3 (23.8.11)

= ≠4 · lim
xæ≠Œ

x
3 (23.8.12)

= ≠4 · (≠Œ)3 (23.8.13)
= ≠4 · (≠Œ) (23.8.14)
= Œ. (23.8.15)

23.9 Limits at ±Œ for rational functions

Example 23.9.1. Let’s compute

lim
xæŒ

x
3 + x + 1

3x3 ≠ 3x2 .

Let’s try using the quotient law. We get

lim
xæŒ

x
3 + x + 1

3x3 ≠ 3x2 . = limxæŒ x
3 + x + 1

limxæŒ 3x3 ≠ 3x2 (23.9.1)

= Œ
Œ . (23.9.2)

This is undefined! So we can’t use the quotient law—at least in the way we’ve used
it. We failed, like we’ve failed before. That’s okay. We keep trying.

Here’s a wonderful trick: Let’s divide top and bottom of the function in question
by x

3. Then we obtain:

lim
xæŒ

x3

x3 + x
x3 + 1

x3

3x3

x3 ≠ 3x2

x3
.
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Let’s follow this til the end:

lim
xæŒ

x
3 + x + 1

3x3 ≠ 3x2 = lim
xæŒ

x3

x3 + x
x3 + 1

x3

3x3

x3 ≠ 3x2

x3
(23.9.3)

=
limxæŒ

x3

x3 + x
x3 + 1

x3

limxæŒ 3x3

x3 ≠ 3x2

x3
(23.9.4)

=
limxæŒ 1 + 1

x2 + 1
x3

limxæŒ 3 ≠ 3 1
x

(23.9.5)

=
limxæŒ 1 + limxæŒ

1
x2 + limxæŒ

1
x3

limxæŒ 3 ≠ limxæŒ 3 1
x

(23.9.6)

= 1 + 0 + 0
3 ≠ 3 · 0 (23.9.7)

= 1
3 . (23.9.8)

The first line was the “divide top and bottom by x
3” trick, the next was the quotient

rule, then we did some algebra. We obtain (23.9.6) using the addition rule, and then
we obtain (23.9.6) by evaluating the limits we already knew how to evaluate. The
final line is just arithmetic.

Here is the general trick: When computing limits of rational functions at
±Œ, divide the top and bottom by the highest power of x you see in the

denominator.

Exercise 23.9.2. Compute limxæŒ
x2+x+1
3x3≠3x2 .

Possible solutions. Here is some work:

lim
xæŒ

x
2 + x + 1

3x3 ≠ 3x2 = lim
xæŒ

1
x + 1

x2 + 1
x3

3 ≠ 3 1
x

(23.9.9)

=
limxæŒ

1
x + 1

x2 + 1
x3

limxæŒ 3 ≠ 3 1
x

(23.9.10)

= 0 + 0 + 0
3 ≠ 0 (23.9.11)

= 0. (23.9.12)

Exercise 23.9.3. Compute limxæŒ
x4+x+1
3x2≠3x .
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Possible solutions.

lim
xæŒ

x
4 + x + 1
3x2 ≠ 3x

= lim
xæŒ

x
2 + 1

x + 1
x2

3 ≠ 3 1
x

(23.9.13)

=
limxæŒ x

2 + 1
x + 1

x2

limxæŒ 3 ≠ 3 1
x

(23.9.14)

= limxæŒ x
2 + 0 + 0

3 ≠ 0 (23.9.15)

= lim
xæŒ

x
2

3 (23.9.16)

= 1
3 lim

xæŒ
x

2 (23.9.17)

= 1
3 · Œ (23.9.18)

= Œ. (23.9.19)

The reason this trick works: When you divide the denominator by the highest
power of x you see there, you’ll always end up with a denominator that looks like

some number + a
1
x

+ b
1
x2 + . . . (some coe�cient) 1

xk
.

But if we take the limit of this expression as x æ ±Œ, we get the same “some
number,” because all other terms go to zero. In particular, the denominator is an
actual number, so we’ll never run into a quotient that’s undefined.

23.10 Bonus: Definition of limits at infinity

We’ve seen some examples of limits at infinity. Here is a definition:

Definition 23.10.1. We say that f has a limit at Œ if there exists a number L

such that for every real number ‘, we can guarantee that “if x is big enough, f(x) is
within ‘ of L.”

More precisely, we say that f has a limit at Œ if there exists a number L such
that for every real number ‘, we can find a number F so that6

x > F =∆ |f(x) ≠ L| < ‘. (23.10.1)
6
Here, x > F is the mathematical translation of “x is big enough.”
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(Remember that “ =∆ ” means “implies.”)
We call L the limit of f as x approaches Œ, and we write

lim
xæŒ

f(x) = L.

Graphically, (23.10.1) means that so long as our x coordinate is larger than F ,
our graph of f is within a strip of height 2‘ centered at L:

F

L + ‘

L ≠ ‘

You will rarely have to use this definition, but you should know that the definition
above provides the mathematical precision necessary to prove things like limit laws
for infinity (see next section).

We can also talk about limits as x approaches ≠Œ—to find such limits is to
ask whether f approaches a particular number as x becomes more and more negative.
We write such a limit as

lim
xæ≠Œ

f(x).

23.11 For next time

I expect you to be able to compute limits similar to the following:

lim
xæ0+

1 + x

4x2 .

lim
xæ3+

5x

x ≠ 3 .
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lim
xæ0

1
x2

lim
xæC≠

1
x ≠ C

and lim
xæC+

1
x ≠ C

and lim
xæC

1
x ≠ C

.


