## Lecture 17

## $u$ substitution

We saw last time that to find areas (i.e., to compute integrals) we must find antiderivatives.
$u$ substitution is a trick for finding antiderivatives.

## 17.1 u substitution

You can think of $u$ substitution as like a "reverse chain rule." Let me say what I mean.

Suppose $F(x)=g(h(x))$. That is, $F=g \circ h$, so that $F$ is a composition the functions $g$ and $h$. Then you know that

$$
\begin{equation*}
F^{\prime}(x)=g^{\prime}(h(x)) \cdot h^{\prime}(x) \tag{17.1.1}
\end{equation*}
$$

That's the chain rule.
In the last lecture, we saw the importance of being able to work backwards to find antiderivatives - that is, can you recognize when you see something like $g^{\prime}(h(x))$ • $h^{\prime}(x)$ ? If so, all you need to do to find the antiderivative is

- Recognize $h$, and
- Take the antiderivative of $g^{\prime}$. Then to conclude, just
- Set $F=g \circ h$.

Exercise 17.1.1. Find an antiderivative for the following functions:
(a) $f(x)=2 x \cos \left(x^{2}\right)$.
(b) $f(x)=\frac{2 x}{x^{2}+3}$
(c) $f(x)=-\sin (\sin (x)) \cdot \cos (x)$.

I am not exactly sure of why—perhaps because it is hard to recognize two derivatives $\left(g^{\prime}\right.$ and $\left.h^{\prime}\right)$ at once - calculus textbooks teach us a technique called $u$ substitution to find antiderivatives in situations like this. It can sometimes be confusing, and though I am not a huge fan of $u$ substitution, I will teach it to you in case you find it easier than eye-balling the chain rule.

The way $u$ substitution works is by identifying the $h$ in the equation (17.1.1). For example, consider the indefinite integral

$$
\begin{equation*}
\int \cos (x) \sqrt{\sin (x)} d x \tag{17.1.2}
\end{equation*}
$$

You might recognize a "function within a function," i.e., a composition, in $\sqrt{\sin (x)}$. You might recognize that the "inside function"- $\sin (x)$-has a derivative given by the factor outside the $\sqrt{--}$ symbol, namely the $\cos (x)$ factor. Thus you can verify that the inside function $h(x)=\sin (x)$ says that our integrand is of the form $g^{\prime}(h(x)) \cdot h^{\prime}(x)$. In this case, then, we see that $g^{\prime}$ must be the square root function.

But, rather than thinking this all through, $u$ substitution encourages you to stop thinking and try to do algebra instead. (I am not a fan.) Here is how you do it:

Step One (identifying and substituting $u$ ): One substitutes the inside function by a variable $u$. You should think of $u$ as a function of $x$. So, for example, a naive re-writing of (17.1.2) gives

$$
\begin{equation*}
\int \cos (x) \sqrt{u} d x \tag{17.1.3}
\end{equation*}
$$

Things look worse right now-there is a $u$ and an $x$ and who knows what in the world this means. Here is the (useful?) confusing part:

Notation 17.1.2 $(d u)$. Because $u$ is a function of $x$, we can introduce a new symbol called

$$
d u
$$

that is defined to satisfy the following property:

$$
\begin{equation*}
d u=\frac{d u}{d x} d x \tag{17.1.4}
\end{equation*}
$$

Indeed, note that if you are allowed to cancel symbols like $d x$ the lefthand side of (17.1.4) can be obtained from the righthand side by "cancelling" the $d x$. I warn you that $d u$ and $d x$ are just symbols - they are not numbers - so the fraction notation is
more misleading than it is useful. You can't just cancel symbols willy-nilly without knowing what they mean. Regardless, $d u$-as a symbol-is defined precisely in a way that encourages such dangerous (and, in this case, correct) cancellation.

Or, rearranging (17.1.4), we find

$$
\begin{equation*}
d x=\frac{1}{\frac{d u}{d x}} d u \tag{17.1.5}
\end{equation*}
$$

End of notation.
Step Two (replacing $d x$ by $d u$ terms): We plug in $u(x)=\sin (x)$, so that $\frac{d u}{d x}=$ $\cos (x)$. Then we can continue to simplify (17.1.3):

$$
\begin{align*}
\int \cos (x) \sqrt{u} d x & =\int \cos (x) \sqrt{u} \frac{1}{\frac{d u}{d x}} d u  \tag{17.1.6}\\
& =\int \cos (x) \sqrt{u} \frac{1}{\cos (x)} d u  \tag{17.1.7}\\
& =\int \sqrt{u} d u \tag{17.1.8}
\end{align*}
$$

Notice that we have used the definition of $d u$ to get rid of the $d x$.
Step Three: Take the integral in terms of $u$. What the indefinite integral in (17.1.8) is asking is: Can you find the antiderivative of the square root function? Yes, you can! Moreover, the integral is no longer viewing the integrand as a function of $x$; the " $d u$ " symbol is telling you to think of the integrand as a function of $u$. Well,

$$
\frac{d}{d u}\left(u^{3 / 2}\right)=\frac{3}{2} u^{1 / 2},
$$

so we find that

$$
\frac{d}{d u} \frac{2}{3}\left(u^{3 / 2}\right)=u^{1 / 2}
$$

In other words, we can solve the indefinite integral in (17.1.8) to find

$$
\begin{equation*}
\int \sqrt{u} d u=\frac{2}{3} u^{3 / 2} . \tag{17.1.9}
\end{equation*}
$$

And now let's plug back in what $u$ equals; we defined $u$ to be $u(x)=\sin (x)$, so the righthand side of (17.1.9) becomes

$$
\frac{2}{3} u^{3 / 2}=\frac{2}{3}(\sin (x))^{3 / 2}=\frac{2}{3} \sqrt{\sin (x)^{3}}
$$

Indeed, you can check that this function of $x$ is an antiderivative of our original function $\cos (x) \sqrt{\sin (x)}$.

Here is the summary of $u$ substitution:

$$
\int g^{\prime}(h(x)) h^{\prime}(x) d x=\int g^{\prime}(u) d u
$$

In the end, if you find the integral $\int g^{\prime}(u) d u=g(u)$, make sure you substitute back in $h(x)=u(x)$ to get

$$
\int g^{\prime}(h(x)) h^{\prime}(x) d x=g(h(x))
$$

Exercise 17.1.3. Compute the following indefinite integrals:
(a) $\int \frac{1}{x} \sqrt{\ln (x)} d x$
(b) $\int 3 x^{2} \cos \left(x^{3}\right) d x$
(c) $\int x^{2} \cos \left(x^{3}\right) d x$
(d) $\int \sin (x) \cos (\cos (x)) d x$
(e) $\int x^{3} e^{x^{4}} d x$

### 17.2 Application: The integral of $\tan (x)$

Here is (what I think is) a good application of $u$ substitution.
Exercise 17.2.1. Find

$$
\int \tan (x) d x
$$

Let's note

$$
\int \tan (x) d x=\int \frac{\sin x}{\cos x} d x=\int \sin (x) \cdot \frac{1}{\cos (x)} d x
$$

We note that $\sin (x)$ is (almost) the derivative of $\cos (x)$-it's off by a sign. But it almost looks like we can take

$$
g(x)=\frac{1}{x}, \quad h(x)=\cos (x)
$$

for then

$$
g(h(x)) h^{\prime}(x)=\frac{1}{\cos (x)} \cdot(-\sin (x)) .
$$

So we have that

$$
\begin{equation*}
\int \sin (x) \cdot \frac{1}{\cos (x)} d x=-\int(-\sin (x)) \cdot \frac{1}{\cos (x)} d x \tag{17.2.1}
\end{equation*}
$$

Letting $u=\cos (x)$, we have that

$$
d u=-\sin (x) d x, \quad d x=\frac{d u}{-\sin (x)}
$$

Hence (17.2.1) becomes

$$
\begin{align*}
-\int(-\sin (x)) \cdot \frac{1}{\cos (x)} d x & =-\int(-\sin (x)) \cdot \frac{1}{u} \cdot \frac{d u}{-\sin (x)}  \tag{17.2.2}\\
& =-\int \frac{1}{u} d u \tag{17.2.3}
\end{align*}
$$

But you know how to integrate $\frac{1}{u}$; the antiderivative is $\ln (|u|)$. Hence we have

$$
-\int \frac{1}{u} d u=-\ln (|u|)+C
$$

Now, let's remember that $u(x)=\cos (x)$, so plugging this in, we have

$$
\begin{equation*}
\int \tan (x) d x=-\int \frac{1}{u} d u=-\ln (|u|)+C=-\ln (|\cos (x)|)+C \tag{17.2.4}
\end{equation*}
$$

Here is one more simplification we can make: Remember the formula

$$
a \ln (b)=\ln \left(b^{a}\right)
$$

(If you don't remember it, you should verify it using what you know about exponent laws and the definition of $\ln !$ ) In particular,

$$
-\ln (b)=\ln \left(\frac{1}{b}\right)
$$

Thus, we can further modify (17.2.4) to become

$$
\int \tan (x) d x=\ln \left(\left|\frac{1}{\cos (x)}\right|\right)+C
$$

Or, if you like secant, which is defined by $\sec (x)=1 / \cos (x)$, you can rewrite this as

$$
\int \tan (x) d x=\ln (|\sec (x)|)+C
$$

Remark 17.2.2. If you prefer the "eyeball" method, you could have recognized that $\tan (x)$ is of the form $\sin (x) \times$ something, and that this something has $\cos (x)$ in it. Thus you could be inspired to use the (reverse) chain rule.

$$
\sin (x) \cdot \frac{1}{\cos (x)}=h^{\prime}(x) \cdot g^{\prime}(h(x))
$$

You recognize now that $g^{\prime}(x)$ has to be $\frac{1}{x}$, so that $g(x)$ has to be $\ln |x|$. Then, by the (reverse) chain rule,

$$
\int g^{\prime}(h(x)) h^{\prime}(x) d x=g(h(x))+C=\ln \left|\frac{1}{\cos x}\right|+C .
$$

I much prefer this method, but there are uses for $u$ substition in one's life, so if you prefer to solve problems using $u$ substitution (which will require you to get used to manipulating equations like $d u=\frac{d u}{d x} d x$ ), go for it!

### 17.3 Using $u$ substitution to compute integrals

$u$ substitution isn't just for computing antiderivatives; it also allows you to compute integrals!

Fact. If $u(x)=h(x)$, then

$$
\begin{equation*}
\int_{a}^{b} g^{\prime}(h(x)) h(x) d x=\int_{u(a)}^{u(b)} g^{\prime}(u) d u . \tag{17.3.1}
\end{equation*}
$$

Example 17.3.1. Let's evaluate

$$
\int_{1}^{4} \frac{2 x}{1+x^{2}} d x .
$$

If I want to use $u$ substitution, I recognize that $2 x$ is the derivative of $1+x^{2}$. So I will set $u(x)=1+x^{2}$, so that $d u=2 x d x$. Then

$$
\int \frac{2 x}{1+x^{2}} d x=\int \frac{2 x}{u} \cdot \frac{1}{2 x} d u=\int \frac{1}{u} d u .
$$

What the fact (17.3.1) tells us is that we can evaluate the definite integral in using the $u$ variable form of the integral:

$$
\int_{1}^{4} \frac{2 x}{1+x^{2}} d x=\int_{u(1)}^{u(4)} \frac{1}{u} d u .
$$

So we find

$$
\begin{align*}
\int_{u(1)}^{u(4)} \frac{1}{u} d u & =\left.\ln |u|\right|_{u(1)} ^{u(4)}  \tag{17.3.2}\\
& =\left.\ln |u|\right|_{1+1^{2}} ^{1+4^{2}}  \tag{17.3.3}\\
& =\left.\ln |u|\right|_{2} ^{17}  \tag{17.3.4}\\
& =\ln |17|-\ln |2|  \tag{17.3.5}\\
& =\ln \frac{|17|}{|2|}  \tag{17.3.6}\\
& =\ln \frac{17}{2} . \tag{17.3.7}
\end{align*}
$$

If we want, we could have computed this without using $u$ substitution. Again recognizing that if $h(x)=1+x^{2}$, then $h^{\prime}(x)$, we have that the integrand is equal to $h^{\prime}(x) \cdot \frac{1}{h(x)}$. Thus we want $g^{\prime}(x)=\frac{1}{x}$, which has integral $g(x)=\ln |x|$. We conclude

$$
\begin{align*}
\int_{1}^{4} g^{\prime}(h(x)) h^{\prime}(x) d x & =\left.g(h(x))\right|_{1} ^{4}  \tag{17.3.8}\\
& =\ln \left|1+4^{2}\right|-\ln \left|1+1^{2}\right|  \tag{17.3.9}\\
& =\ln |17|-\ln |2|  \tag{17.3.10}\\
& =\ln \frac{17}{2} \tag{17.3.11}
\end{align*}
$$

Exercise 17.3.2. Compute the following.
(a)

$$
\int_{0}^{1} x\left(x^{2}-1\right)^{5} d x
$$

(b)

$$
\int_{0}^{1 / 12} \frac{1}{\sqrt[3]{1-6 x}} d x
$$

(c)

$$
\int_{2}^{3} x e^{x^{2}} d x
$$

(d)

$$
\int_{0}^{1} x\left(x^{2}-1\right)^{5} d x
$$

(e)

$$
\int_{\pi / 4}^{\pi / 2} \frac{\cos (x)}{\sin ^{2}(x)} d x
$$

