
Lecture 17

u substitution

We saw last time that to find areas (i.e., to compute integrals) we must find an-
tiderivatives.

u substitution is a trick for finding antiderivatives.

17.1 u substitution

You can think of u substitution as like a “reverse chain rule.” Let me say what I
mean.

Suppose F (x) = g(h(x)). That is, F = g ¶ h, so that F is a composition the
functions g and h. Then you know that

F Õ(x) = gÕ(h(x)) · hÕ(x). (17.1.1)

That’s the chain rule.
In the last lecture, we saw the importance of being able to work backwards to find

antiderivatives—that is, can you recognize when you see something like gÕ(h(x)) ·
hÕ(x)? If so, all you need to do to find the antiderivative is

• Recognize h, and

• Take the antiderivative of gÕ. Then to conclude, just

• Set F = g ¶ h.

Exercise 17.1.1. Find an antiderivative for the following functions:

(a) f(x) = 2x cos(x2).
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32 LECTURE 17. U SUBSTITUTION

(b) f(x) = 2x
x2+3

(c) f(x) = ≠ sin(sin(x)) · cos(x).

I am not exactly sure of why—perhaps because it is hard to recognize two deriva-
tives (gÕ and hÕ) at once—calculus textbooks teach us a technique called u substi-
tution to find antiderivatives in situations like this. It can sometimes be confusing,
and though I am not a huge fan of u substitution, I will teach it to you in case you
find it easier than eye-balling the chain rule.

The way u substitution works is by identifying the h in the equation (17.1.1).
For example, consider the indefinite integral

⁄
cos(x)

Ò
sin(x)dx. (17.1.2)

You might recognize a “function within a function,” i.e., a composition, in
Ò

sin(x).
You might recognize that the “inside function”—sin(x)—has a derivative given by the
factor outside the

Ô
≠≠ symbol, namely the cos(x) factor. Thus you can verify that

the inside function h(x) = sin(x) says that our integrand is of the form gÕ(h(x))·hÕ(x).
In this case, then, we see that gÕ must be the square root function.

But, rather than thinking this all through, u substitution encourages you to stop
thinking and try to do algebra instead. (I am not a fan.) Here is how you do it:

Step One (identifying and substituting u): One substitutes the inside function
by a variable u. You should think of u as a function of x. So, for example, a naive
re-writing of (17.1.2) gives ⁄

cos(x)
Ô

udx. (17.1.3)

Things look worse right now—there is a u and an x and who knows what in the
world this means. Here is the (useful?) confusing part:

Notation 17.1.2 (du). Because u is a function of x, we can introduce a new symbol
called

du

that is defined to satisfy the following property:

du = du

dx
dx. (17.1.4)

Indeed, note that if you are allowed to cancel symbols like dx the lefthand side of
(17.1.4) can be obtained from the righthand side by “cancelling” the dx. I warn you
that du and dx are just symbols—they are not numbers—so the fraction notation is
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more misleading than it is useful. You can’t just cancel symbols willy-nilly without
knowing what they mean. Regardless, du—as a symbol—is defined precisely in a
way that encourages such dangerous (and, in this case, correct) cancellation.

Or, rearranging (17.1.4), we find

dx = 1
du
dx

du. (17.1.5)

End of notation.

Step Two (replacing dx by du terms): We plug in u(x) = sin(x), so that du
dx =

cos(x). Then we can continue to simplify (17.1.3):
⁄

cos(x)
Ô

udx =
⁄

cos(x)
Ô

u
1
du
dx

du (17.1.6)

=
⁄

cos(x)
Ô

u
1

cos(x) du (17.1.7)

=
⁄ Ô

u du. (17.1.8)

Notice that we have used the definition of du to get rid of the dx.
Step Three: Take the integral in terms of u. What the indefinite integral in

(17.1.8) is asking is: Can you find the antiderivative of the square root function?
Yes, you can! Moreover, the integral is no longer viewing the integrand as a function
of x; the “du” symbol is telling you to think of the integrand as a function of u. Well,

d

du
(u3/2) = 3

2u1/2,

so we find that
d

du

2
3(u3/2) = u1/2.

In other words, we can solve the indefinite integral in (17.1.8) to find
⁄ Ô

u du = 2
3u3/2. (17.1.9)

And now let’s plug back in what u equals; we defined u to be u(x) = sin(x), so the
righthand side of (17.1.9) becomes

2
3u3/2 = 2

3(sin(x))3/2 = 2
3

Ò
sin(x)3.
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Indeed, you can check that this function of x is an antiderivative of our original
function cos(x)

Ò
sin(x).

Here is the summary of u substitution:
⁄

gÕ(h(x))hÕ(x)dx =
⁄

gÕ(u)du.

In the end, if you find the integral
s

gÕ(u)du = g(u), make sure you substitute back
in h(x) = u(x) to get ⁄

gÕ(h(x))hÕ(x)dx = g(h(x)).

Exercise 17.1.3. Compute the following indefinite integrals:

(a)
s 1

x

Ò
ln(x) dx

(b)
s

3x2 cos(x3) dx

(c)
s

x2 cos(x3) dx

(d)
s

sin(x) cos(cos(x)) dx

(e)
s

x3ex4
dx

17.2 Application: The integral of tan(x)
Here is (what I think is) a good application of u substitution.

Exercise 17.2.1. Find ⁄
tan(x)dx.

Let’s note ⁄
tan(x)dx =

⁄ sin x

cos x
dx =

⁄
sin(x) · 1

cos(x)dx.

We note that sin(x) is (almost) the derivative of cos(x)—it’s o� by a sign. But it
almost looks like we can take

g(x) = 1
x

, h(x) = cos(x),

for then
g(h(x))hÕ(x) = 1

cos(x) · (≠ sin(x)).
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So we have that
⁄

sin(x) · 1
cos(x)dx = ≠

⁄
(≠ sin(x)) · 1

cos(x)dx. (17.2.1)

Letting u = cos(x), we have that

du = ≠ sin(x)dx, dx = du

≠ sin(x) .

Hence (17.2.1) becomes

≠
⁄

(≠ sin(x)) · 1
cos(x)dx = ≠

⁄
(≠ sin(x)) · 1

u
· du

≠ sin(x) (17.2.2)

= ≠
⁄ 1

u
du (17.2.3)

But you know how to integrate 1
u ; the antiderivative is ln(|u|). Hence we have

≠
⁄ 1

u
du = ≠ ln(|u|) + C.

Now, let’s remember that u(x) = cos(x), so plugging this in, we have
⁄

tan(x)dx = ≠
⁄ 1

u
du = ≠ ln(|u|) + C = ≠ ln(| cos(x)|) + C. (17.2.4)

Here is one more simplification we can make: Remember the formula

a ln(b) = ln(ba).

(If you don’t remember it, you should verify it using what you know about exponent
laws and the definition of ln!) In particular,

≠ ln(b) = ln(1
b
).

Thus, we can further modify (17.2.4) to become
⁄

tan(x)dx = ln(
---

1
cos(x)

---) + C.

Or, if you like secant, which is defined by sec(x) = 1/ cos(x), you can rewrite this as
⁄

tan(x)dx = ln(
--- sec(x)

---) + C.
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Remark 17.2.2. If you prefer the “eyeball” method, you could have recognized that
tan(x) is of the form sin(x) ◊ something, and that this something has cos(x) in it.
Thus you could be inspired to use the (reverse) chain rule.

sin(x) · 1
cos(x) = hÕ(x) · gÕ(h(x)).

You recognize now that gÕ(x) has to be 1
x , so that g(x) has to be ln |x|. Then, by the

(reverse) chain rule,
⁄

gÕ(h(x))hÕ(x)dx = g(h(x)) + C = ln | 1
cos x

| + C.

I much prefer this method, but there are uses for u substition in one’s life, so if you
prefer to solve problems using u substitution (which will require you to get used to
manipulating equations like du = du

dx dx), go for it!

17.3 Using u substitution to compute integrals

u substitution isn’t just for computing antiderivatives; it also allows you to compute
integrals!

Fact. If u(x) = h(x), then
⁄ b

a
gÕ(h(x))h(x)dx =

⁄ u(b)

u(a)
gÕ(u)du. (17.3.1)

Example 17.3.1. Let’s evaluate
⁄ 4

1

2x

1 + x2 dx.

If I want to use u substitution, I recognize that 2x is the derivative of 1 + x2. So I
will set u(x) = 1 + x2, so that du = 2xdx. Then

⁄ 2x

1 + x2 dx =
⁄ 2x

u
· 1

2x
du =

⁄ 1
u

du.

What the fact (17.3.1) tells us is that we can evaluate the definite integral in using
the u variable form of the integral:

⁄ 4

1

2x

1 + x2 dx =
⁄ u(4)

u(1)

1
u

du.
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So we find
⁄ u(4)

u(1)

1
u

du = ln |u|
-----

u(4)

u(1)
(17.3.2)

= ln |u|
-----

1+42

1+12
(17.3.3)

= ln |u|
-----

17

2
(17.3.4)

= ln |17| ≠ ln |2| (17.3.5)

= ln |17|
|2| (17.3.6)

= ln 17
2 . (17.3.7)

If we want, we could have computed this without using u substitution. Again rec-
ognizing that if h(x) = 1 + x2, then hÕ(x), we have that the integrand is equal to
hÕ(x) · 1

h(x) . Thus we want gÕ(x) = 1
x , which has integral g(x) = ln |x|. We conclude

⁄ 4

1
gÕ(h(x))hÕ(x) dx = g(h(x))

-----

4

1
(17.3.8)

= ln |1 + 42| ≠ ln |1 + 12| (17.3.9)
= ln |17| ≠ ln |2| (17.3.10)

= ln 17
2 . (17.3.11)

Exercise 17.3.2. Compute the following.

(a) ⁄ 1

0
x(x2 ≠ 1)5dx.

(b)
⁄ 1/12

0

1
3
Ô

1 ≠ 6x
dx.

(c) ⁄ 3

2
xex2

dx
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(d) ⁄ 1

0
x(x2 ≠ 1)5dx.

(e)
⁄ fi/2

fi/4

cos(x)
sin2(x) dx.
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