
Lecture 16

Integration and the Fundamental

Theorem of Calculus

Given a function f , along with an interval [a, b], we saw last time that we can
approximate the area under the graph of f .1 We did this by choosing n rectangles,
so that their widths were given by (b ≠ a)/n, and by choosing a height of each
rectangle as dictated by f . We ended up with a summation that looked like

n≠1ÿ

i=0
f(xi)

b ≠ a

n
(Lefthand rule).

Now, these approximations should get better the more rectangles that we use—that
is, the bigger n is. In this class, we will define the integral as follows:

Definition 16.0.1 (The integral). The integral of f from a to b is defined to be:

lim
næŒ

nÿ

i=1
f(xi≠1)

b ≠ a

n
.

We denote this limit by
⁄ b

a
f(x)dx.

In words: This is the limit of the numbers we obtain from the Riemann sum when
we let n grow larger and larger.

1“Under” is informal; remember, this is the area between the graph of f and the x-axis, computed
with “sign,” where regions under the x-axis are declared to have negative areas.
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Remark 16.0.2. You might wonder if we could define an integral to be computed not
as the limit of equal interval subdivisions of [a, b], but using arbitrary subdivisions
and taking the limit as these arbitrary subdivisions get finer and finer. Indeed,
you can; but setting up this theory would distract us from the main thread of this
course. A proper course in analysis may deal with a proper way to set up the so-
called “Riemann integral” (though some analysis classes skip over this in favor of a
Lebesgue integral).

16.1 Getting used to, and reading, the notation

This is the first time you’ve seen the notation
⁄ b

a
f(x)dx.

Let’s dissect this.
First, the above collection of symbols can be described as:

“The integral of f(x) from a to b.”

If you were reading the symbols out loud like an automated reader, you would say
“the integral from a to b of f of x, dx.” 2

Second:
s

is called “the integral symbol.” And a and b are called the bounds of
the integral. The interval [a, b] is sometimes called the region of integration.

Third: f(x) is referred to as the integrand of the integral.
Finally, let’s talk about where this notation comes from. Well, we saw a Riemann

sum:
nÿ

i=1
f(xi)(b ≠ a)/n

which we could rewrite (by thinking of (b ≠ a)/n as a change in x) as
nÿ

i=1
f(xi)�x.

Now imagine being supremely lazy and neglecting to write the super and subscripts
for �: ÿ

f(xi)�x.

2Analogously, you would describe f Õ(x) as the derivative of f at x, but if you read the symbols
out loud, you would say “f prime of x”.
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Remember I told you earlier that � is a Greek letter that turned into S. Imagine
being so lazy that you start writing your S really quickly, until your writing started
to look like this: ⁄

f(xi)�x.

At this point you’ve become so lazy that you don’t know that the i mean any more,
so let’s drop that: ⁄

f(x)�x.

And � is a Greek letter that has now-a-days turned into D. For no good reason
(except to have a lower-case letter connote something smaller than an upper-case
letter), let’s make it lower-case: ⁄

f(x)dx.

You should remember that you’re taking the area between x = a and x = b, so let’s
at least remember that: ⁄ b

a
f(x)dx.

And this is one way to reason out how this notation came about.

Remark 16.1.1. This notation actually has very good reasons to exist, especially
because the symbol dx actually has an incredibly fancy meaning in the math com-
munity – it’s a di�erential form, and one can always integrate di�erential forms. But
we’re not ready to confront that meaning in this class. (Nor will we be ready until
you have had enough multivariable calculus, which is a course you would take two
semesters from now if you wished.)

16.2 Definitions versus intuitions

Remember that I make a hubbub about what is a definition, and what is an intuition.
Here is a table of intuitions and definitions for our two most important ideas:

Why do I make a hubbub? Intuition is how you should think about things:
They guide you in solving problems. Definitions give content to your intuition, and
allow you to actually prove things. For example, even if you have an intuition for
derivatives, you would be hard-pressed to prove that (sin x)Õ = cos x without the
definitions of both limit and of derivative!

I emphasize this. Remember, the equation (sin x)Õ = cos x isn’t true just because
some teacher told you it was; it’s true because you can prove it, and the proof doesn’t
consist of people waving their hands about what the slope of the tangent line should
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Term Definition Intuition

Derivative The limit of a di�erence
quotienta

The slope of the line tangent to
the graph of f at x.

Integral The limit of values of Rie-
mann sumsb

The signed area between the
graph of f and the x-axis.

aWe define f Õ(x) = limhæ0
f(x+h)≠f(x)

h .
bWe have defined

s b
a f(x)dx = limnæŒ

qn
i=1 f(xi) b≠a

n .

be—the proof consists of using definitions and logical deductions to get from Step A
to Step B. This is the heart of mathematics.

That being said, just as with derivatives, I will only ask you to prove some of
the rules of integration, and other rules, I will (hypocritically) ask you to just take
them on faith. And, as I mentioned before, your intuition of thinking about integral
as area will help you most.

16.3 The rate of change of area

Let’s say you have a function f(x), and you want to compute
⁄ b

a
f(x)dx.

As I’ve advocated, let’s think of this as the area. Now let’s say you want to nudge
the region of integration just a little bit bigger—say by some number h.
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a b b + h
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In other words, suppose we want to compare
⁄ b

a
f(x)dx with

⁄ b+h

a
f(x)dx.

The di�erence is (using our intuition) the area of f(x) between b and b + h—this is
the darker shaded region in the picture above. In other words, the di�erence is

⁄ b+h

a
f(x)dx ≠

⁄ b

a
f(x)dx =

⁄ b+h

b
f(x)dx = area of darker shaded region. (16.3.1)

Exercise 16.3.1. (a) By approximating the shaded region using a single rectangle
of width h and using the lefthand rule for this single rectangle, approximate

⁄ b+h

a
f(x)dx ≠

⁄ b

a
f(x)dx.

(b) Using your answer from part (a), write down an approximation for
s b+h

a f(x)dx ≠
s b

a f(x)dx

h
.

Intuitively, would you expect your approximation to be better or worse as h
shrinks?

(c) Based on part (b), make a guess as to what

lim
hæ0

s b+h
a f(x)dx ≠

s b
a f(x)dx

h

should be in term of f and b.

(d) Note that the area
s b

a f(x)dx should change if we change the bounds of integration—
and in particular, if we change b. So, keeping a unchanged for now, let’s define
a function F as follows:

F (b) =
⁄ b

a
f(x)dx.

What can you say about the derivative of F at b?
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16.4 A guide for the previous exercise

How can we approximate the area of the grey region? As the exercise suggests,
let’s use a single rectangle, and the lefthand rule. Then the grey region can be
approximated by a single rectangle of width h and height f(b). So

⁄ b+h

b
f(x)dx ¥ height ◊ width = f(b) · h. (16.4.1)

Here, the symbol ¥ means “approximately equals.” Putting (16.3.1) and (16.4.1)
together, we find: ⁄ b+h

a
f(x)dx ≠

⁄ b

a
f(x)dx ¥ f(b) · h.

So, dividing both sides by h, we have that
s b+h

a f(x)dx ≠
s b

a f(x)dx

h
¥ f(b).

Of course, if h is a tiny number, this approximation should get better and better. In
other words, that ¥ symbol will behave more like an = symbol as h shrinks. Hmm.
We’ve learned what it means to let h approach 0—we should take a limit. Thus,
knowing that ¥ should become closer and closer to becoming an equals sign as h
goes to 0, we seem to get

lim
hæ0

s b+h
a f(x)dx ≠

s b
a f(x)dx

h
= f(b). (16.4.2)

Remark 16.4.1. Let’s take a moment to parse this. This is saying the following: We
can think of area—i.e., of

s b
a f(x)dx as something that depends on b.3 And (16.4.2)

is telling us that the rate of change at b—that is, the derivative of the area function
at b—seems to be very close to being f(b) itself.

Let’s really hone in on this observation. Let’s say F (b) is the function that tells
us the area of f between a and b. Then (16.4.2) seems to be telling us that

dF

db
(b) = f(b).

In other words, whatever function F measures area, it seems to be a function whose
derivative recovers f .

3Intuitively, if we increase b, we are increasing the region of integration, and the area we’re
interested in clearly changes. So the number, area, changes depending on b.
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16.5 The fundamental theorem of Calculus

All the “seems” and “¥” and “approximates” on the previous page was maddeningly
imprecise, suggestive, incomplete. Thanks to Isaac Newton and Gottfried Wilhelm
Leibniz, it turns out that what “seems” actually “is.”

Theorem 16.5.1 (The fundamental theorem of calculus). Let F (x) be any function
such that

F Õ(x) = f(x).

Then, for reasonable functions4 on the interval [a, b], we have:
⁄ b

a
f(x)dx = F (b) ≠ F (a).

A function F (x) such that F Õ(x) = f(x) is called an antiderivative of f(x). What
the fundamental theorem says is that we can compute an integral of f (which was
defined in a way that had nothing to do with derivatives!) by finding antiderivatives
of f .

16.6 Exercises

16.6.1 Finding antiderivatives

The fundamental theorem of calculus tells us we can compute areas involving f by
finding functions F for which F Õ = f . Such F are called an antiderivative of f . So
let’s practice this process of finding antiderivatives.

Exercise 16.6.1. (a) Let f(x) = 3. Find a function F (x) so that F Õ(x) = f(x).

(b) Let f(x) = 5x. Find a function F (x) so that F Õ(x) = f(x).

(c) Let f(x) = x3. Find a function F (x) so that F Õ(x) = f(x).

(d) Let f(x) = sin x. Find a function F (x) so that F Õ(x) = f(x).

(e) Let f(x) = cos x. Find a function F (x) so that F Õ(x) = f(x).
4“Reasonable” is not a technical term. In this class, we will only encounter reasonable functions.

If f is di�erentiable, or even just continuous, f is a “reasonable” function. There are many ways to
demand that f be reasonable, with a technical assumption being that f is “Riemann integrable.”
We won’t need this fanciness in our course.
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(f) Let f(x) = ex. Find a function F (x) so that F Õ(x) = f(x).

(g) Let f(x) = 1/x. Find a function F (x) so that F Õ(x) = f(x).

(h) Let f(x) = x4/3. Find a function F (x) so that F Õ(x) = f(x).

Solutions to Exercise 16.6.1. (a) We have seen functions whose derivatives are just
constants—for example, if F (x) = 7x, then we know F Õ(x) = 7. So if we want
F Õ(x) to equal 3, we can take F (x) = 3x.
However, we could also choose F (x) = 3x+13. For then the derivative is again
F Õ(x) = (3xÕ) + (13)Õ = 3 + 0 = 3. Indeed, we could add any number (constant)
to 3x to obtain a function that satisfies F Õ(x) = f(x).

(b) Let f(x) = 5x. Find a function F (x) so that F Õ(x) = f(x). We know that the
derivative of x2 is 2x, so if we just multiply x2 by the correct multiple, we can
engineer the derivative to become 5x. So let’s try

F (x) = 5
2x2.

Then by the power rule, we indeed find that F Õ(x) = 5
2 ◊ 2 ◊ x = 5x.

And, just as in the previous problem, if we add a constant, so we try

F (x) = 5
2x2 + 999

for example, then we still have F Õ(x) = 5x2.
Do you see a pattern? There are infinitely many possible choices for F , always.
And they’ll always di�er by some constant.5

(c) We know that x4 has derivative 4x3. So just as in the previous problem, let’s try

F (x) = 1
4x4.

Then F Õ(x) = 1
4 · 4x3 = x3. And, as before, we can add any constant to 1

4x4 to
obtain another function whose derivative is given by f(x) = x3. For example,

F (x) = 1
4x4 + fi

is a valid solution.
5In fact, we proved after the mean value theorem that if two functions have the same derivative,

the two functions must di�er by a constant.
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(d) Let f(x) = sin x. As before, we must utilize our knowledge of derivatives to
realize that F (x) = ≠ cos(x) is a valid choice. And, as before, we can also take
something like F (x) = ≠ cos(x) + 23 (or any constant) as a viable candidate.

(e) Let f(x) = cos x. Then we can take F (x) = sin x, plus any constant we desire.

(f) Let f(x) = ex. We can take F (x) = ex, plus any constant we desire.

(g) Let f(x) = 1/x. We can take F (x) = ln x, plus any constant we desire.

(h) Take F (x) = 3
7x7/3 (plus any constant number).

Notation 16.6.2 (plus C). At this point, you may be tired of me telling you how
we can add any constant we want. For this reason, we will often write

F (x) = ln x + C (16.6.1)

instead of writing out “F (x) could be ln x plus any constant we desire.” The capital
C stands for “constant.”

This is a very sloppy and ambiguous notation. It is similar to the use of ± int he
quadratic formula:

x = ≠b ±
Ô

b2 ≠ 4ac

2a
.

x does not simultaneously equal everything on the right hand side. The quadratic
formula is lazy notation for saying x could equal the fraction on the right given by
taking ± to be +, or another possible value of x is to take the righthand side with
± being set to ≠.

Likewise, the +C in (16.6.1) means an antiderivative of f could be given by
ln x + 3, or by ln x + fi, or by ln x + e, or any possible value of C.

16.6.2 Finding integrals

Now let’s use the fundamental theorem of calculus to compute integrals (i.e., areas).

Exercise 16.6.3. (a) Let f(x) = 3x2. Find the area of f(x) along the interval [1, 4].

(b) Let f(x) = ex. Find the area of f(x) along the interval [0, ln 3].

(c) Let f(x) = cos x. Find the area of f(x) along the interval [0, fi/4].
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Solutions to Exercise 16.6.3. (a) Let f(x) = 3x2. Find the area of f(x) along the
interval [1, 4].
In this problem, [a, b] = [1, 4]—that is, a = 1 and b = 4. The area is computed
by finding the integral ⁄ b

a
f(x)dx =

⁄ 4

1
3x2dx.

(Note that we never remove the “dx” when we solve problems; we’ll see a use for
this later on.) By the fundamental theorem of calculus, we know that

⁄ 4

1
3x2dx = F (4) ≠ F (1)

if F is any function satisfying F Õ(x) = 3x2. Well, we can find such a function.
Let F (x) = x3. So, by the fundamental theorem of calculus (FTC), we have

⁄ 4

1
3x2dx = F (4) ≠ F (1) = (4)3 ≠ (1)3 = 64 ≠ 1 = 63.

How cool is that? You just proved that the region shaded below:

0

20

40

60

80

a = 1 b = 4

has area given by 63!
As we see from above, the steps to finding the area/integral

s b
a f(x)dx are: (1)

Find an antiderivative for f , then (2) plug in b and a into the antiderivative, and
take di�erence.

(b) Let f(x) = ex. Find the area of f(x) along the interval [0, ln 3]. Again, area is
given by ⁄ ln 3

0
f(x)dx.
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By the fundamental theorem of calculus, if we find some F (x) such that F Õ(x) =
f(x), then

⁄ ln 3

0
f(x)dx = F (ln 3) ≠ F (0).

Well, ex is its own derivative, so we can take F (x) = ex. Then

⁄ ln 3

0
f(x)dx = F (ln 3) ≠ F (0) = eln 3 ≠ e0 = 3 ≠ 1 = 2.

This proves that the region shaded below

0

10

20

a = 0 b = ln 3

has area given by 2.

(c) Let f(x) = cos x. Find the area of f(x) along the interval [0, fi/4]. Let F (x) =
sin x. Then

⁄ fi/4

0
cos(x)dx = F (fi/4) ≠ F (0) = sin(fi/4) ≠ sin(0) =

Ô
2

2 ≠ 0 =
Ô

2
2 .
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So you’ve proven that the area of the region shaded below

≠2

≠1

0

1

2

a = 0 b = fi/4

is
Ô

2
2 .

16.7 A warning about the integral of 1/x

As you know, the derivative of ln(x) is 1/x. So you’re tempted to say that ln(x) is
the antiderivative of 1/x. But a word of caution!

ln(x) is only defined when x is a positive number. (After all, eblah can only ever
equal a positive number.) So it couldn’t possibly be the (whole) antiderivative of
1/x, because 1/x also knows how to take in negative numbers.

Well, here is a new function that knows how to take in negative numbers:

ln(|x|).

If you like, this function also has a piecewise definition:

ln(|x|) =

Y
]

[
ln(x) x > 0
ln(≠x) x < 0.

Now, by the chain rule,
(ln(≠x))Õ = ≠1 · 1

≠x
= 1

x
.

So even for negative values of x, we find that

ln(|x|)Õ = 1
x

.
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So, be warned: An antiderivative of
1
x is ln(|x|) (possibly plus some constant).

16.8 Applications of integration

When we studied derivatives, we saw that “the slope of the tangent line at a” had
to do with “the rate of change at a.” In other words, the geometric idea of slope had
real-world implications (by allowing us to understand how things are changing at a
given moment).

Likewise, now we’ll study how the geometric notion of “area” can actually repre-
sent meaningful quantities in the real world.

16.8.1 Recollection on units of derivatives

First, let’s talk a little about units (like meters, seconds, liters, dollars et cetera).
Let’s say that f(t) is a function telling us the position of something—say, in

meters—away from some reference point. Let’s say that the input variable t is time,
measured in seconds. Then when we compute the slope of a secant line

f(t + h) ≠ f(t)
h

the physical quantity in the numerator is measured in meters, while the quantity in
the denominator is measured in seconds. In other words, the above slope has natural
units, called

meters
seconds

otherwise known as meters per second. And indeed, these are the units with which
we measure speed and velocity. (If f were to output a number in terms of miles, and
if t were measured in hours, the slope would have units of miles-per-hour.) This is
confirmation, using the physical idea of units, that the derivative of a position-in-time
function can be interpreted as velocity.

Example 16.8.1. If v(t) is a function whose input variable t is measured in seconds,
and whose output value v(t) is the velocity of something in motion, measured in
meters-per-second, then the units for the derviative vÕ(t) would be in

meters-per-second
seconds .

In other words, the units would be “meters per second per second,” often abbrevaited
as “meters per second squared,” or m/s2. If you have taken a physics class, you may
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recognize this as a unit for acceleration—it measures how velocity is changing with
respect to time.
Example 16.8.2. If P (d) is a function that tells you the water pressure underwater
(measured in millibars) at depth d (measured in meters), then the derivative of P
with respect to d would have units

millibars
meter

or millibars-per-meter. This tells you the rate of change with pressure with respect
to depth.

16.8.2 The integral of velocity is distance (or position)

Let’s say that v(t) is a function that tells you the velocity of an object (measured
in meters-per-second) as a function of the time t (measured in seconds). Remember
that the integral is obtained by approximating the area between the graph of v(t)
and the t-axis by drawing a bunch of rectangles. So what units does the area of a
rectangle have?

If we draw a rectangle of height v (measured in meters-per-second) and width �t
(measured in seconds), the product v · �t has units

meters
seconds · seconds.

The units of seconds cancel, leaving us with units of meters. In other words, the
area under the graph of v(t) naturally has units of meters—i.e., the integral must
represent some sort of distance!

This makes sense: Velocity times time equals distance traveled. The rectangles we
draw when computing Riemann sums represent our attempts at computing distance
traveled by replacing v(t) (where velocity could be changing all the time) with a
bunch of functions that look constant (as though velocity were constant over the
intervals �t).

The upshot. If v(t) is a velocity function and t is a time variable, then
⁄ b

a
v(t) dt

represents the distance traveled between time a and time b. Informally, the integral
of velocity (with respect to time) is distance.
Remark 16.8.3. This makes sense if you think of “integrals” (i.e., antiderivatives)
as the reverse operation of “derivatives.” You take the derivative of position to obtain
velocity; so the antiderivative of velocity is position.
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16.8.3 Density and mass

Here is another common situation where integrals come up. Let’s suppose that you
have a rod, but the rod is made up of a non-uniform material. We’ll be concerned
with the density of the rod, which is a measure of how much mass is contained in a
particular portion of the rod. (For example, the rod may be made of heavier material
at one end than at the other end.)

Then we may be given a function fl(l) which tells us the density of the rod l
meters away from one end of the rod.6 We’ll be interested in density as measured in
“kilograms per meter.”7 If you think about it for a moment: If you know the density
of a rod in terms of kilograms per meter, then if you multiply this density by the
length of the rod (meters), you should obtain the mass of the rod itself. This would
be very much true if the rod had uniform/constant density, but in our situation, fl
changes with respect to l.

But what if we compute the integral
⁄ b

a
fl(l) dl ?

Again approximating this integral using rectangles (using a Riemann sum), we see
that each rectangle’s area represents a quantity in units of

kilograms
meters · meters.

In other words, each rectangle’s area has units of kilograms. (Just as with velocity,
each rectangle represents an approximation where we pretend that density is constant
over the width of the rectangle.) Adding all the areas of these rectangles up, we obtain
something in units of kilograms—and it is the mass of the portion of the rod living
over the interval [a, b].

Upshot. The integral of density (with respect to length) is mass.

Remark 16.8.4. In fact, this kind of thinking works for all kinds of situations when
you replace density with concentration per unit length. (You can think of density
as the concentration of “mass” per unit length.) For example, if a straight piece of
string was soaked with a chemical, and the concentration of the chemical is changing
along its length, the integral of this concentration (with respect to length) would
represent the total amount of chemical soaked into the string.

6fl is a Greek letter, read “rho.” fl is the lower-case form. P is the capital form. I don’t know
why, but it is common to denote density by this Greek letter.

7In real life, we most often measure density in kilograms per cubic meter, but we only care about
how density changes as we move along the length of our rod, so we’ll use kilograms per meter.
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Remark 16.8.5. You might be a little dissatisfied that we’ve only talked about
rods and strings. In real life, we might be interested in concentrations of chemicals
measured over swaths of land (i.e., an actual region, now just a string), or in density
of substances with actual volume. Indeed, you can take integrals over things like
swaths of land and volumes of things, but we won’t talk about that in this class.
You’ll learn how to do such things if you take a “multivariable calculus” class, which
is sometimes called “Calculus III.” (Also, a dirty secret: I think that Calculus III can
be taken successfully without ever taking Calculus II.)

16.8.4 Getting used to wonky units

Sometimes, we have to get used to wonkier units.
For example, let’s say P (t) represents the population (of a country, say) at time

t. So P is measured in units of persons; and let’s say we measure t in years. Then
what would ⁄ b

a
P (t) dt

represent? Whatever it represents, it will have units of “person-years.” (You can
think of this as “Person◊Years.”) If you aren’t used to this kind of thing, these units
can seem quite strange.

But they can be quite useful. For example, let’s say that on average, a person in
our country consumes 25MWh (megawatt-hours)8 of natural gas per year in energy
usage. (This is about the average for United States as of 2015.) In other words, our
country consumes about 25MWh’s worth of natural gas per person per year.

So if we multiply the above integral by 25, we obtain something in units of

MWh
person-year ◊ person-year.

In other words, we’ll determine the total amount of natural gas (in terms of megawatt-
hours) that we as a country consumed between time a and time b.

16.8.5 Work examples

In physics, work is defined as “force times distance.” For example, let’s say you want
to lift a box weighing 10 kilograms 5 meters. It turns out that the force of gravity

8Megawatt-hours is a common unit of measuring energy. As a point of comparison, in the US,
as of 2014, it’s estimated that the average person uses about 13MWh of electricity per year. (This
is more than quadruple the global average electricity use.)
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is always acting on that box, and this force can be computed to be 98 Newtons. If
you want to lift the box 5 meters, then the work required to that is

98 Newtons ◊ 5 meters = 490 Newton-meters.

In general, if you want to lift an object weighing m kilograms a height of h meters,
the work required is

force times distance = m ◊ 9.8 Newtons ◊ h meters = 9.8mh Newton-meters.

This should gice some intuition about the word work—the more something weighs,
of course it takes more “work” to lift it; and the farther up you want to lift it, of
course it takes more “work.”

Remark 16.8.6. It turns out that Newton-meters is also the unit for energy; in
other words, work is measured in energy units. And this is actually the real use of
work in physics.

As an example, let’s suppose that you lift up a 10-kilogram box by 5 meters, so
you do 490 Newton-meters of work (as we showed above). Now let’s say you drop the
box. It turns out that, when the box hits the ground again, it has a kinetic energy
of exactly 490 Newton-meters (ignoring air resistance for the discussion). Kinetic
energy is defined as one-half of mass times velocity-squared; it is the energy of a
moving object.

There are many situations where the force in question is not constant.

Example 16.8.7. For an ideal spring, there is a number k so that when the spring
is stretched x meters from its natural state, you need to exert a force of kx Newtons
to maintain the spring’s stretched state. This is called Hooke’s Law; you usually
learn about it in a course in physics. The number k is called the spring constant.

How much work does it take to stretch a spring from 0 to 0.2 meters from its
natural state?

Well, at any given moment when the spring is stretched x meters, one must exert
kx Newtons of force. To stretch this a further �x meters, the work to do that would
be kx ◊ �x.

So, if we were to approximate this process using tinier and tinier intervals of
stretching, we would end up with an expression like

nÿ

i=1
kxi�x
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where we are using n tiny intervals of stretch, x1 = 0 + �x and xn = 0.2. Of course,
by definition, if we take n æ Œ, we find the integral:

⁄ 0.2

0
kx dx.

This integral becomes
1
2kx2

-----

0.2

0
.

16.8.6 Pandemic examples

The most common graph you’ve seen on the news during the pandemic has to do
with “new infections.” If you model this bar graph using a function f(t), then f(t)
can be measured in units of “persons per day” (measuring the number of people
testing positive per day) and t can be measured in units. Then the integral

⁄ b

a
f(t) dt

has units of (persons per day)◊(days); that is, units of “persons.” It measures the
number of people who tested positive between time a and time b.9

Similarly, if g(t) is a function modeling the number of new hospitalizations per
day, the integral

s b
a g(t) dt measures the total number of hospitalizations between

time a and time b. Sometimes, we are more interested in g(t) than in the integral,
because hospitals may be most afraid of a “rush” of new patients—that is, a hospital
may be able to handle 10,000 hospitalizations over the course of a year, but certainly
not if they all come at once.

Regardless, let’s let G(t) represent the total number of people in the hospital for
COVID-19 at time t. Then

s b
a G(t) dt is measured in person-days. This is a poten-

tially useful measure of how much of our hospital resources COVID-19 is occupying.
After all, this integral takes into account the fact that a patient who spends 20 days
in the hospital may require more hospital resources than a patient who spends only
1 day in the hospital.

16.9 Basic laws of integration

Before we get to u substitution, here are some basic properties about integrals.
9This “number of people who tested positive” is a bit misleading; it is possible that some people

test positive multiple times.
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(I) You can concatenate intervals.

⁄ b

a
f(x)dx +

⁄ c

b
f(x)dx =

⁄ c

a
f(x)dx. (16.9.1)

You actually used the above fact last time: To find the area of f over an
interval [a, c], you can divide the interval into two pieces–[a, b] and [b, c]—and
computed the area over each of those smaller intervals, then add the result.
Note that b doesn’t need to be a midpoint or anything; it’s just any point
between a and c. Here, for example, is a consequence of the above fact:

⁄ b

a
f(x)dx =

⁄ c

a
f(x)dx ≠

⁄ c

b
f(x)dx. (16.9.2)

(II) Integrals scale. Here is another fact. If m is any real number, we have
⁄ b

a
mf(x)dx = m

⁄ b

a
f(x)dx. (16.9.3)

That is, area scales (by m) if you scale f (by m). Intuitively, if you think of
f(x) as describing the height of a curvy fence at position x, if you make the
fence m times taller everywhere, the area also grows by m times. Here, m is
any real number. It could be zero or negative or positive.

(III) If you add the integrands, you add the integrals. Another fact that will
be useful is ⁄ b

a
f(x) + g(x)dx =

⁄ b

a
f(x)dx +

⁄ b

a
g(x)dx. (16.9.4)

Informally, if you have something of height f(x) at x, then you add on a height
of g(x) at every x, then the area of the resulting figure is obtained by adding
the areas given by f and given by g.

(IV) Reverse, reverse. The final fact that will be useful is
⁄ b

a
f(x)dx =

⁄ a

b
≠f(x)dx (16.9.5)

This is is a somewhat strange rule, but it will come up. So far, we’ve always hads b
a consist of numbers such that a < b; but as we compute, we will sometimes

end up with
s a

b with b > a. If this happens, you just reverse the sign of f and
reverse the roles of b and a. If you like,

s b
a tells you to take the area “from a

to b,” which usually has meant “from left to right.” If the integral tells us to
reverse directions by going from right to left (e.g., from b to a), we think of
the contributions from f negatively.
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That’s it. Three rules. As a student, you might feel good that there’s “less to
memorize,” but actually, having fewer rules means you have fewer guideposts to rely
on, so you need to be more creative about how to compute integrals!

16.10 Some notation

For today you’ve practiced taking integrals. For example, to compute
⁄ 4

1

1
x

dx,

you must
1. find an antiderivative F to the integrand, and then

2. compute F (b) ≠ F (a) (which in this case if F (4) ≠ F (1)).
We know that ln(x) has derivative given by 1/x, so we can take F (x) = ln x. We

thus find
⁄ 4

1

1
x

dx = ln(4) ≠ ln(1) (16.10.1)

= ln(4) ≠ 0 (16.10.2)
= ln 4. (16.10.3)

Let me introduce the following:
Notation 16.10.1. We write

F (x)
-----

b

a

to mean
F (b) ≠ F (a).

In other words,

F (x)
-----

b

a

= F (b) ≠ F (a).

Example 16.10.2. So for example, the above work could have been written
⁄ 4

1

1
x

dx = ln(x)
-----

4

1
(16.10.4)

= ln(4) ≠ ln(1) (16.10.5)
= ln(4) ≠ 0 (16.10.6)
= ln 4. (16.10.7)
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As usual, this notation is meant to help you. I promise you’ll begin to use this
notation in no time, because you’ll always first the antiderivative first, and then
you’ll plug in b and a. This “vertical bar” notation will help you keep track of those
steps as you write.

16.11 More terms

Here are some terms that are commonly uses in calculus classes; I am thus obligated
to tell you about them, so that you are note excluded from the culture of calculus.

Definition 16.11.1. The indefinite integral is an old terminology that survives
mostly in calculus textbooks. The notation

⁄
f(x)dx

is called an “indefinite” integral because the integral does not specify where we are
integrating—i.e., there is no a and no b.

A lot of calculus textbooks ask you to “solve the indefinite integral.” I am not
a fan—at all—of this terminology. Regardless, because it is so prevalent in calculus
culture, I have to tell you about it to prevent you from experiencing confusion or
frustration should some other calculus professor torture you with this old terminology.

To “solve an indefinite integral” means to “find all antiderivatives of f(x).” (You
saw last time—via the Fundamental Theorem of Calculus (FTC)—why finding an
antiderivative helps you find the integral.)

If F is an antderivative of f(x), it is customary to write the following as a “correct
answer” to the calculus textbook’s problem of finding an indefinite integral:

⁄
f(x)dx = F (x) + C.

The +C is a perennially confusing notation. Let me explain it. Recall from the
lecture about the mean value theorem that we discovered the following fact: If G
and F have the same derivative (meaning F Õ = GÕ) then F ≠ G must be a constant
function. For example, it could be that F ≠ G = fi or F ≠ G = 0 or F ≠ G = 3.
The important part is that it could be any constant. So if F is an antiderivative,
every other antiderivative can be expressed as F+ something, where something is a
constant. that’s what the +C above means. The C stands for “constant,” and the
notation

s
f(x)dx = F (x) + C is a lazy way of saying “any antiderviative of f can

be obtained from F (x) by adding some constant C.”
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Example 16.11.2. The indefinite integral
s

sin(x)dx is given by

≠ cos(x) + C.

I really dislike the language of “indefinite integral,” because we already have a
perfectly good word for the underlying idea one is exploring: Antiderivative. The
“+C” warning really just gives you a heads up that a lot of integral tables and
encyclopedia articles have +C because an antiderivative really could be obtained
from F by adding some constant, and a particular constant may be very important
for a particular engineering problem. But if some calculus person ever asks you to
find an “indefinite” integral, just find the antiderivative and write “+C.” And know
that the only reason you’re writing +C is to indicate that any other antiderivative
can be obtained by adding a constant to the one you found.
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16.12 Preparation for next time

For next time, I expect you to be able to find antiderivatives of simple functions
(Exercise 16.6.1). I expect you to be able to also compute areas using the fundamental
theorem of calculus (Exercise 16.6.3). Finally, I also expect you to be able to tell me
what units an integral should have given the units of the integrand and the input
variable.


