
Lecture 14

Mean Value Theorem (and logic
and di�erentiability)

14.1 The Mean Police
Let’s begin with a story about the Mean Police. A college friend told me that this
he watched a video about the Mean Police to learn about the Mean Value Theorem.

One day, you drive from Austin to San Antonio, which is about an 80-mile drive.
You make the drive in 50 minutes.

Then one day, the Mean Police come knocking on your door. They say that they
know you drove 80 miles in 50 minutes. So, by their math,

80 miles
50 minutes = 80 miles

5
6hours = 80

5
6

miles per hour = 480
5 miles per hour = 96 miles per hour

was the speed at which you drove.
You retort: No, no. There’s no way I was driving 96 miles per hour that whole

time! I began in Austin, and I couldn’t have been driving 96 miles per hour through
that city.

The Mean Police respond: The speed limit is 80 miles per hour at the fastest;
and we know that you were driving at least 96 miles per hour at some point. So
that’s enough for us to issue you a ticket.

Of course, you don’t want a ticket, but are the Mean Police correct? It’s not like
they even had a radar gun to measure your speed. Were you driving at least 96 miles
per hour at some point?
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The math The Mean Police are correct, of course. They don’t know when exactly
you were driving above the speed limit, and they don’t know where, either. But if
you could make an 80-mile trip in 50 minutes, at some point you were driving at
least 96 miles per hour. And there’s no place in Texas where the speed limit is that
high. So you were breaking the speed limit at some point!

And this basic math is quite powerful. From the perspective of the Mean Police,
they didn’t need to set up radar guns or have police stake out strips of highway to
measure your speed; all they needed to know were your starting point, ending point,
and the length of time you traveled.

Let’s translate this into math language. Suppose f is the function that ways how
far you’ve traveled, where f is in units of miles, and the input will be in units of
hours. (So at time t hours into your trip, you’ve traveled f(t) miles.)

What the police know are that

f(0) = 0 (because you haven’t traveled any miles when you begin, 0 hours into your trip)

and
f(5/6) = 80 because you traveled 80 miles in 5/6 of an hour.

And what they conclude is that at some time t, you were traveling at 96 miles per
hour. In other words, the police are claiming that at some time t, they know that

f Õ(t) = 96.

Remember, 96 came from measuring

f(5/6) ≠ f(0)
5/6 = 96.

To summarize: If we know where you began, where you ended, and how long it
took you, we don’t know how exactly you drove, but we do know that you reached a
certain speed at some point.

14.1.1 Mathematical translation
So let’s suppose that f is some function. In the example above, f could be a function
that takes the time as an input, and outputs where you are.

What we know is

1. A starting time a,



14.2. STUDYING THE MEAN VALUE THEOREM 5

2. An ending time b,

3. Where you began, f(a), and

4. Where you ended, f(b).

Based on this information, we can conclude: At some point between a and b (inclu-
sive), you had a speed of (f(b)≠f(a))/(b≠a). In other words, there is some moment
c in the interval [a, b] such that f Õ(c) = (f(b) ≠ f(a))/(b ≠ a).

We’ll state this as a theorem:

Theorem 14.1.1 (Mean Value Theorem). Let f be a function, and choose two
numbers a and b for which a < b. Suppose that f is di�erentiable at every point
between a and b. Then there exists some number c in the interval [a, b] such that

f Õ(c) = f(b) ≠ f(a)
b ≠ a

.

Example 14.1.2. At noon yesterday, the temperature in San Marcos was 60 degrees
Farenheit. At noon today, the temperature was 62 degrees Farenheit. Over those 24
hours, the temperature changed by a total of +2 degrees Farenheit. So, by the Mean
Value Theorem (assuming that temperature is a di�erentiable function of time),
we know there was some moment in those 24 hours at which the temperature was
changing at a rate of 2

24 degrees per hour. That is, a rate of 1/12 degrees per hour.
(That does not mean that the temperature changed 1/12 degrees in some hour;

it means at some moment in time, 1/12 deg/hr is how fast the temperature was
changing.)

In this example, c is that moment, a is noon yesterday, b is noon today, f(a) is
60, f(b) is 62, and f(x) measures the temperature at time x (measured in hours).

Expectation 14.1.3. You are expected to read and to understand the statement of
Theorem 14.1.1 above.

14.2 Studying the Mean Value Theorem
We can write the Mean Value Theorem out as an if-then statement. You should
try to do this on your own, too, but here’s what we would get. Remember that
if-then statements have a hypothesis and a conclusion: “If HYPOTHESIS, then
CONCLUSION.”

In the Mean Value Theorem, the hypotheses are these:
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• f is a function1

• a and b are two numbers with a < b, and

• f is di�erentiable at every number between a and b.

Then the conclusion is:

• There is some number a < c < b so that the derivative of f at c is equal to the
value

f(b) ≠ f(a)
b ≠ a

.

In the real world, you can often ignore the hypothesis that “f must have a deriva-
tive at every point between a and b,” because this is often true or assumed. But in
math, we often have functions like |x| that don’t have derivatives at certain points,
so the hypothesis is quite important.

Example 14.2.1. Let f(x) = x sin(x). Note that f(0) = 0, and that f(fi
4 ) is equal

to
fi

4 sin(fi

4 ) = fi

4 · 1 = fi

4 .

Setting a = 0 and b = fi
4 , we can compute that

f(b) ≠ f(a)
b ≠ a

=
fi
4 ≠ 0
fi
4 ≠ 0 = 1.

So, at some point between a = 0 and b = fi
4 , there is a number c for which

f Õ(c) = 1.

And we know what f Õ is—the derivative of f is the function f Õ(x) = sin(x)≠x cos(x).
So, in other words, there is some number c between 0 and fi

4 so that

sin(c) ≠ c cos(c) = 1.

At first glance, the equation above is kind of subtle! Is it obvious that there should
be a number so that sin(c) ≠ c cos(x) is equal to 1?

Well, the Mean Value Theorem doesn’t tell us where c is, but it does tell us that
c exists.

1Technically, f needs to be continuous, too, but we’re going to ignore this necessary hypothesis
for now.
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Example 14.2.2. Let f(x) = x3. Let’s note that f(1) = 1 and f(1.1) = 1.331.
Then

f(1.1) ≠ f(1)
1.1 ≠ 1 = 1.331 ≠ 1

0.1 = 0.331
0.1 = 3.31.

So, using the Mean Value Theorem, we know that there is some number c between
1 and 1.1 that satisfies the equation f Õ(c) = 3.31.

Well, what is f Õ? We know that f Õ(x) = 3x2. So if we were to try to solve the
equation f Õ(x) = 3.31, we would see the following:

f Õ(x) = 3.31
3x2 = 3.31

x2 = 3.31
3

x = ±
Û

3.31
3

(14.2.1)

It’s probably not obvious at first glance whether the square root of (3.31)/3 is between
1 and 1.1. But the Mean Value Theorem tells us that it must be (because, by solving
the equation above, we see that this is the only number at which the derivative of f
is equal to 3.31).

So this isn’t a typical use of the Mean Value Theorem, but it’s something.

14.3 Some general applications of the Mean Value
Theorem

14.3.1 Functions that aren’t constant
Definition 14.3.1 (Constant functions). We’ll call a function constant if for every
pair of input values, the outputs are the same. That is, f is constant if f(a) = f(b)
for every choice of a and b.

A less complicated way to visualize this is that the graph of f is a horizontal line.
But visualizations can be misleading, so I’m going to use the complicated defini-

tion.

Proposition 14.3.2. Suppose f is di�erentiable. If we know that f is not a constant
function, then there is some c for which f Õ(c) is not zero.



8LECTURE 14. MEAN VALUE THEOREM (AND LOGIC AND DIFFERENTIABILITY)

Proof. Suppose we know that f is not constant. That means that there are two
di�erent inputs that have di�erent outputs. Let’s call these inputs a and b, so that
the outputs f(a) and f(b) are not equal.

Because f is di�erentiable, we can use the Mean Value Theorem. The theorem
tells us that there is some input c for which

f Õ(c) = f(b) ≠ f(a)
b ≠ a

.

On the right, the numerator is not zero, because we know that f(b) ”= f(a). This
means that the fraction on the righthand side is some fraction with a non-zero number
in the numerator. Such fractions never equal zero. So f Õ(c) is not zero.

That finishes the proof!

14.3.2 There are many ways to write a proof for a statement
As with any good medium of expression, there are many ways to write a proof. But
the content must be solid. Below are some examples.

By the way, the white box at the end means “end of proof.” Sometimes, people
also write “QED” (quod erat demonstrandum) at the end of a proof.

Proof. Because f is not constant, we can find two numbers a ”= b with f(a) ”= f(b).
We can note

f(b) ≠ f(a)
b ≠ a

is a number that does not equal zero, because the numerator is not zero.
On the other hand, the Mean Value Theorem says that (because f is di�eren-

tiable) there is some number c satisfying

f Õ(c) = f(b) ≠ f(a)
b ≠ a

.

The righthand side—as we just said—is not zero. Thus f Õ(c) ”= 0. Putting everything
together, we see that there is some point c at which f Õ(c) ”= 0.

Proof. By the Mean Value Theorem, for any two points a and b, we know there is
some c in [a, b] so that

f Õ(c) = f(b) ≠ f(a)
b ≠ a

.

So we are finished if we can find a, b so that f(b) ≠ f(a) does not equal zero (for
then f Õ(c) will be non-zero). Well, we know that a and b satisfying f(b) ≠ f(a) exist
because f is non-constant. QED
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Proof. We know the following:

1. There are two numbers a and b so that f(b) ≠ f(a) ”= 0.

2. For some number c between a and b,

f Õ(c) = f(b) ≠ f(a)
b ≠ a

.

3. The fraction f(b)≠f(a)
b≠a does not equal zero.

The first statement is true because f is not a constant function. The second statement
is true by the Mean Value Theorem (which we can use because f is di�erentiable).
The third statement is true because the fraction has a non-zero numerator (by the
first statement).

Putting 2. and 3. together, we have found a number c so that f Õ(c) does not
equal zero. QED.


