Lab exercises: Concavity, local minima and maxima

Exercise 9.1.1 (Facts of life). For the following, you might be able to have guesses at answers. But the point of the exercise is to see why those guesses are correct, too!

- (a) Among all pairs of numbers (a, b) that add to 100, which pair(s) have the largest value of $a \times b$?
- (b) Among all pairs of *positive* numbers (a, b) that multiply to 100, which pair(s) have the smallest value of a + b? Is there a pair with a largest value of a + b?

Exercise 9.1.2. Consider the ellipse $x^2 + 9y^2 = 1$. Among all the rectangles one can fit inside this ellipse, what is the rectangle of largest area? (Give its dimensions.)

Exercise 9.1.3 (Drugs). Two drugs – drug A and drug B – are modeled to have a synergistic effect. If their dosages, as measured in milligrams, multiplies to 12 milligrams-squared, a desired outcome is achieved. However, drug A costs 100 dollars per milligram, and drug B costs 300 dollars per milligram.

What is the minimum cost at which one can achieve the desired outcome using these two drugs? Say how much of drug A and how much of drug B should be taken to achieve this cost.

Some solutions

Solution to 9.1.1. For (a), we are given a + b = 100 and we must maximize the function ab. Because we are only used to functions with one input variable, let's choose either a or b. We will choose a to be the variable we keep around; you can try with b if you like, for practice.

Then b = 100 - a, so the function we are trying to maximize is the function a(100 - a). To maximize this function, we want to find its critical points. If we have a critical point with negative second derivative, we know we have found a local maximum. The derivative of this function (with respect to a) is given by

$$(a(100-a))' = 100 - 2a$$

so the derivative is zero when a = 50. You can check that the second derivative is negative at this value of a (and in fact, for all a). So this is a local maximum. Because the function is concave down everywhere, we conclude that this local maximum is a global maximum.

For (b), we are given that ab = 100 and we must minimize or maximize a + b. In other words, we must study the function $a + \frac{100}{a}$. So let's look for its critical points. The derivative of this function is given by

$$1 - \frac{100}{a^2}$$

so we see that this equals zero when $a^2 = 100$. In other words, a = 10 or -10. The problem asks us to consider only positive values of a and b, so the only answer we keep is a = 10.

Is this a maximum or a minimum? Taking the second derivative of $a + \frac{100}{a}$, we find

$$\frac{200}{a^3}$$

which at a = 10 is a positive number. So the value a = 10 is a local *minimum* by the second derivative test; and because the above second derivative is always positive for positive values of a, the function is always concave up, so this local minimum is a global minimum. We conclude that a = 10, b = 10 is the pair of numbers that minimizes a + b.

The question also asks if there is a pair of numbers that maximizes a + b. The answer is no. Suppose that someone claims they have values (a_0, b_0) for which $a_0 + b_0$ is maximal among all numbers multiplying to 100. Well, try setting $a = (a_0 + b_0 + 1)$ and set b = 100/a. Then these values of a and b clearly have a larger sum than $a_0 + b_0$.

Solution to 9.1.2. A rectangle with one corner at the origin, and with opposite corner at a point (x, y) has area xy. This is the function we want to maximize.

On the other hand, we know that $y^2 = (1 - x^2)/9$ because (x, y) has to be on the given ellipse. So the area can be written as a function of x:

$$x\sqrt{1-x^2}/3.$$

We wish to find the critical points of this area function. The derivative is computed as:

$$\frac{1}{3}\left(x\frac{-x}{\sqrt{1-x^2}} + \sqrt{1-x^2}\right) = \frac{1}{3}\left(x\frac{-x}{\sqrt{1-x^2}} + \frac{1-x^2}{\sqrt{1-x^2}}\right)$$
(9.1.1)

$$=\frac{1}{3}\frac{1-2x^2}{\sqrt{1-x^2}}\tag{9.1.2}$$

9.4. FOR NEXT TIME

This expression equals zero precisely when $1 - 2x^2$ equal zero; that is, when

$$x^2 = \frac{1}{2}.$$

So we find that the critical point occurs when $x = \frac{\sqrt{2}}{2}$. We should verify that the second derivative is negative at this value of x (to make sure it is a local maximum) – I will leave that to you.

To give the full dimensions, we must now find the y coordinate. Plugging back into the equation for the ellipse, we must solve for the value of y satisfying

$$\frac{1}{2} + 9y^2 = 1.$$

We find that the solution is

$$y^2 = \frac{1}{18}.$$

So $y = \frac{\sqrt{2}}{6}$. Thus, the dimensions of the rectangle are

$$\frac{\sqrt{2}}{2}$$
 by $\frac{\sqrt{2}}{6}$

Solution to 9.1.3. Let A denote the dosage (in milligrams) of drug A, and likewise B. We are constrained by AB = 12 and we wish to minimize the cost

$$100A + 300B$$
.

Again changing the cost function to depend on only one variable – say, B – we must minimize the function

$$100\frac{12}{B} + 300B.$$

The derivative (with respect to B) is

$$\frac{-1200}{B^2} + 300$$

and this equals zero when

$$B^2 = \frac{300}{1200} = \frac{1}{4}.$$

Note that the second derivative of the cost function is

$$\frac{2400}{B^3}$$

which is always positive for positive values of B, so the above critical point is not only a local minimum, but a global minimum.

To summarize, we achieve our minimal cost when

$$B = \frac{1}{2}.$$

It follows that A = 24. So the dosages should be 24 milligrams of drug A and 0.5 milligrams of drug B. The cost associated to this dosing is

$$100A + 300B = 2400 + 150 = 2550.$$

2,550 dollars. An expensive drug dosage.