
Lecture 6

Derivatives of exp, ln, and other
inverse functions

6.1 Drawing derivatives of ex

Exercise 6.1.1. Below on the left is the graph of f(x) = ex.

ex

1 1

Let me tell you the following fact: The derivative of ex at x = 0 is 1. (In fact, the
value of ex at x = 0 is 1 also.)

(a) Based on this, draw the derivative of ex on the right.

(b) How does your drawing compare to the graph of ex?

3
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6.2 ex is its own derivative
In fact, we have the following theorem:

Theorem 6.2.1 (Derivative of ex). The derivative of ex is itself. That is,

(ex)Õ = ex.

Put another way,
d

dx
(ex) = ex.

How cool is that? There’s a function that is its own derivative!

Exercise 6.2.2. Find the derivative of e3x

Possible solution. Let’s find the derivative of e3x. We have

d

dx
(e3x) = d

dx
(3x) · d(ex)

dx
(3x) (6.2.1)

= 3 · e3x. (6.2.2)

We have used the chain rule in the first line. If you’re confused by it, it may be
worthwhile to write this out step-by-step. Let’s let f(x) = ex and g(x) = 3x. Then
e3x = f(g(x)). Thus

d

dx
(e3x) = d

dx
f(g(x)) (6.2.3)

= f Õ(g(x)) · gÕ(x) (6.2.4)
= f Õ(3x) · gÕ(x). (6.2.5)

(The second equality is due to the chain rule.) But we know that f Õ(x) = ex by
Theorem 6.2.1, and we know gÕ(x) = 3 from previous lectures. Hence we can continue:

f Õ(3x) · gÕ(x) = e3x · 3 = 3e3x.

Exercise 6.2.3. Fix a real number B. Show me that the derivative of

f(x) = eBx
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equals
Bf(x).

More generally, if you have another real number A, let

g(x) = AeBx.

(For example, if you choose A = 3 and B = 5, you would have 3e5x. The previous
example is when A = 1.) Explain why

gÕ(x) = Bg(x).

Application 6.2.4. This kind of behavior is incredibly important for modeling.
For example, how fast is a population growing? In ideal circumstances, the more
individuals there are in a population, the faster we expect the population to grow.
Better yet, we might expect that the rate of population growth is proportional to the
population itself! (Note that “being proportional to” is a far more precise relationship
than “the bigger the population, the faster the growth”.)

That’s exactly what Exercise 6.2.5 tells us about g(x) = AeBx. We see that gÕ

is proportional to g (with proportional constant B). So for example, x could model
time, while g(x) could model the population at time x.

By the way, why might g(x) be a bad model for population growth? For what
kinds of situations might g(x) be a good model? In those situations, what might A
and B represent?

Exercise 6.2.5. Find the derivative of f(x) = 5x. Hints: Remember that 5 = eln 5,
remember the basic rules for dealing with exponents, and use the chain rule.

Exercise 6.2.6. Your friend is excited about the idea that f(x) could equal f Õ(x) and
looks for more examples that looks like ex. They try f(x) = 5x, and are disappointed
that f Õ(x) does not equal f(x).

Is it possible to find any number k—other than e—so that if f(x) = kx, then
f Õ(x) = f(x)?

Remark 6.2.7. Isn’t e special?

Exercise 6.2.8. Now that you know the derivative of g(x) = ex, can you figure out
the derivative of f(x) = ln x?

Hint: What is g ¶ f? What if you try computing (g ¶ f)Õ using the chain rule,
too?
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6.3 Review of inverse functions
Let f be a function. Here’s a question: Given a value of f , can we always determine
which x it came from?
Example 6.3.1. Here are some examples:

1. If f(x) = 3x, and if someone tells you that f takes the value 12, you know
exactly where: x must equal 4. In fact, in general, if f takes value y, you know
the original x is y/3.

2. If f(x) = 2x, and if someone tells you that f takes the value 8, you know
exactly where: x must equal 3. In fact, in general, if f takes value y, you know
f does so at log2 y.

3. If f(x) = x2, and if someone tells you that f takes the value 4, you don’t
know exactly where: x could equal 2 or -2. However, if you restrict yourself to
looking only for positive values of x, then if f takes value y, you know that the
original x is Ô

y.
Below is a visual way to think about this process. Drawn is the graph of f . Given

a value y, can you figure out which value of x satisfies the equation f(x) = y? If so,
that means that the coordinate x now becomes a function of y—you input y, and
you output x—and we can call this function g.

y

x = g(y)

Warning 6.3.2. While we were diligent about drawing g as a function of y before,
from now on, we must now be comfortable realizing that letters are just letters, and
we don’t care if g takes inputs to be symbols that look like “x,” or symbols that look
like “y”; that is, g will often be treated as a function of x, too.
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Definition 6.3.3. Let f be a function. We say that a function g is a left inverse to
f if

(g ¶ f)(x) = x.

Put another way, g “remembers” the original value x that outputted f(x).
We also say that f is a right inverse to g. Put another way, f “knows” that if

g(something) = x, then something = f(x).

6.4 Derivatives of right inverses
It turns out that if we know the derivatives of a function g, then—if g has a right
inverse f—we can figure out the derivatives of the right inverse f .

Lemma 6.4.1. Let g be a function, and suppose that f is a right inverse to g,
defined on some open interval containing x. Suppose also that g is di�erentiable at
f(x), and that gÕ(f(x)) ”= 0. Then

f Õ(x) = 1
gÕ(f(x)) . (6.4.1)

That is, the derivative of f at x is computed by dividing 1 by the derivative of g at
f(x).

Proof. Let’s look at the following string of equalities:

1 = (x)Õ (6.4.2)
= (g ¶ f)Õ. (6.4.3)

The first equality is our knowledge of the derivative of the function x. The next
equality is using the hypothesis that g is a right inverse to f , so that f ¶ g = x.

In total, what this string of equalities says is that the function on the righthand
side is equal to the (constant!) function on the lefthand side. So let’s evaluate at
some point x. We have

1 = (g ¶ f)Õ(x) = gÕ(f(x)) · f Õ(x).

We can divide both sides by gÕ(f(x)) so long as this number isn’t zero; so we find:

1
gÕ(f(x)) = f Õ(x) when gÕ(f(x)) ”= 0.

This is what we wanted.
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Example 6.4.2. f = ln(x) is a right inverse to g(x) = ex. This is because

g ¶ f(x) = eln x = x.

We know the derivative of g(x) = ex, so we can use the lemma to find the derivative
of f(x) = ln(x)! Let’s try:

(ln(x))Õ = f Õ(x) (6.4.4)

= 1
gÕ(f(x)) (6.4.5)

= 1
ef(x) (6.4.6)

= 1
eln(x) (6.4.7)

= 1
x

. (6.4.8)

. The first equality is by definition of f . The next equality is using Lemma 6.4.1.
The rest is just plugging in our knowledge of gÕ and ln.

6.5 The derivative of natural log
The example from the last page is important, so let’s record this as a theorem. (You
will be expected to know this:)

Theorem 6.5.1 (The derivative of ln). The derivative of ln is “one over x.” That
is,

d

dx
ln(x) = 1

x
.

Exercise 6.5.2. Find the derivative of the following functions:

(a) ln(7x)

(b) ln(7x ≠ 9)

(c) ln(cos(x))

(d) ln(sin(x))

(e) ln(x2 ≠ 10)
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(f) ln(x2ex). (For this, you may want to remember that |ln(a + b) = ln(a) + ln(b).)

Possible solutions. We will use the chain rule for all of these.

(a) (ln(7x))Õ = 1
x . This is by writing ln(7x) as a composition of f(x) = 7x and

g(x) = ln(x). Alternatively, you could remember that ln(ab) = ln(a) + ln(b). So
ln(7x) = ln(7) + ln(x). Then (ln(7) + ln(x))Õ = 0 + (ln(x))Õ = 1/x.

(b) (ln(7x ≠ 9))Õ = 7
7x≠9 . This is by writing ln(7x) as a composition of f(x) = 7x ≠ 9

and g(x) = ln(x).

(c) ln(cos(x))Õ = ≠ tan(x), the tangent of x. To see this, write ln(cos(x)) as a
composition of f(x) = cos(x) and g(x) = ln(x). Then by the chain rule, we have

ln(cos(x))Õ = 1
cos(x) ◊ (cos(x))Õ = 1

cos(x) ◊ (≠ sin(x)) = ≠ sin(x)
cos(x) = ≠ tan(x).

(d) ln(sin(x))Õ = cot(x) otherwise known as cotangent of x. To see this, write
ln(sin(x)) as a composition of f(x) = sin(x) and g(x) = ln(x). Then by the
chain rule, we have

ln(sin(x))Õ = 1
sin(x) ◊ (sin(x))Õ = 1

sin(x) ◊ cos(x) = cos(x)
sin(x) = cot(x).

(e) (ln(x2 ≠ 10))Õ = 2x
x2≠10 .

(f) ln(x2ex) = ln(x2) + ln(ex) = ln(x) + ln(x) + x = 2 ln(x) + x. Hence

(ln(x2ex))Õ = (2 ln(x) + x)Õ = 2
x

+ 1.

Here is another way to do this:

(ln(x2ex))Õ = (ln(x2) + ln(ex))Õ = 2x( 1
x2 ) + (x)Õ = 2

x
+ 1.
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6.6 Bonus: Derivatives of other inverse functions.
And, why e?

6.6.1 Inverses, revisited
We learned that

If f(x) = ex, then f Õ(x) = ex.

That is, ex is some seemingly special function—it is its own derivative!
Based on this fact (which we took for granted), we learned about inverses, and

learned that we can try to compute derivatives of inverse functions. As an example,
we recalled that ln x is an inverse to ex, and we deduced that

If f(x) = ln x, then f Õ(x) = 1
x

.

But let’s talk a little bit about what an inverse function is. I am going to ignore the
words “right” and “left” for today, to simplify things.

Informally, an inverse to f is a function that “undoes” f . For example, f takes
a number x, and outputs a number called f(x). What does it mean to undo this?
Well, to undo this process would be to take a number called f(x), and output/return
a number called x.

Example 6.6.1. If f(x) = ex, f takes a number, then outputs e to that number.
For example, f takes a number like 2, and outputs a number e2, which is roughly
7.38905609893 . . ..

If there is to be a function g that applies undo to f , it must take the number
7.38905609893 . . . and output 2. More accurately, if g sees an input called e2, it ought
to return 2. And more generally, if g sees an output balled eblah, g should output
blah.

The great thing is that you had already seen such a function in precalculus—this
function is called ln, or the natural log.

6.6.2 arcsin as an inverse to sin
You have seen other examples of inverses. For example, sin is a function that takes
in an angle, and outputs a height (of a point on the unit circle). Do you think we
could go backward? For example, if we are given a height of a point on the unit
circle, we might be able to say what angle that point is at.
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Figure 6.1: A single height (the blue dashed line) determines two possible points
(the black dots) on the circle, hence two possible angles (in red).

Above is a picture of a blue dashed line (drawn to indicate, for example, a line
of height 0.6). We see an immediate issue, which is that the blue dashed line (i.e.,
a height) actually defines two possible points on the circle. So it’s not clear which
angle we should take. See Figure 6.2.

So let’s just agree as a community that, if we want to specify a point or an angle
from a height, we will always take the point or angle on the right half of the unit
circle.

Definition 6.6.2. We will call this angle the arcsine, or inverse sine, of the height.
So, given a height x, we let

arcsin(x)

denote the angle formed by the point (on the right half of the unit circle) with height
x.

Remark 6.6.3. sin is a function that takes an angle and returns a height. arcsin
does “the reverse,” by taking a height and returning an angle. By design, is it an
inverse to sin (along the right half of the unit circle—that is, for angles between
≠fi/2 and fi/2).
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x

Figure 6.2: The red angle is arcsin(x) (in radians).

6.6.3 The derivative of arcsin
As we saw last time, when we have an inverse function to f , we can find the derivative
of the inverse function in terms of the derivative of f . Let’s recall the work. Suppose
we have a function g(x) so that f(g(x)) = x. Then

1 = (x)Õ = (f(g(x))Õ

= f Õ(g(x)) · gÕ(x)
(6.6.1)

so we know that
gÕ(x) = 1

f Õ(g(x)) .

If we want to find the derivative of arcsin(x), we set g(x) = arcsin(x) and f(x) =
sin(x). So the above formula becomes

(arcsin(x))Õ = 1
cos(arcsin(x)) . (6.6.2)

So we have an expression for the derivative of arcsin(x); but we’d like things to be
more transparent—we’d like to make the righthand side more understandable.

So let’s think carefully. arcsin(x) is the angle (on the right half of the unit circle)
formed by a point of height x. And cos(arcsin(x)) is the horizontal coordinate formed
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by a point at that angle. In other words, cos(arcsin(x)) is the horizontal coordinate
of the black dot in Figure 6.2.

At this point, we can find what cos(arcsin(x)) is in terms of x! We use the
Pythagorean theorem. On any circle centered at the origin, and any point on that
circle, we know

(radius)2 = (horizontal coordinate)2 + (vertical coordinate)2.

We are on the unit circle, so our radius is 1. We also have names already for our
vertical and horizontal coordinates:

(1)2 = (cos(arcsin(x)))2 + x2.

Doing some algebra, we find

cos(arcsin(x)) =
Ô

1 ≠ x2. (6.6.3)

Note that we have used the positive square root of 1≠x2, because we agreed that our
point is on the right half of the circle. (On the left half of the circle, our horizontal
coordinate would be negative.

To summarize, by combining (6.6.2) and (6.6.3), we find the following:

arcsinÕ(x) = 1Ô
1 ≠ x2

Some professors may expect you to know the derivative of arcsin. This
is a derivative that you may well forget in a week after the course ends. On the
other hand, trying to figure out the derivative on your own (by going through the
process we just completed) can take a long time on a test. So, for the purposes of
this course, I would recommend that you just memorize the formula. Future classes,
especially Calculus II, will likely expect you to be able to recall this derivative from
memory.

However, for the purposes of your future and for your understanding, you should
understand that arcsin is just the inverse to sin, so the chain rule allows you to
compute its derivative in terms of the derivative of sin. Then, some geometry (using
the Pythagorean theorem) allows you to compute the derivative of arcsin without
using any sines or cosines in the final answer.

6.7 Bonus: What’s up with e?
I don’t know how you were introduced to the number e, but let’s talk about a really
cool reason to care about e.
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First, let’s consider the following functions:

1. f(x) = 2x

2. f(x) = ex

3. f(x) = 3x

4. f(x) = 5x.

You know how to take the derivatives of these functions. For example, to take the
derivative of 2x, you might write

2x = e(ln 2)·x

so
(2x) = ln 2e(ln 2)·x = ln 2 · 2x.

In other words, when f(x) = 2x, we see that

f Õ(x) = ln 2 · 2x = ln 2 · f(x).

Taking the derivatives of the other functions, we see

1. f(x) = 2x =∆ f Õ(x) = ln 2f(x)

2. f(x) = ex =∆ f Õ(x) = f(x)

3. f(x) = 3x =∆ f Õ(x) = 3f(x)

4. f(x) = 5x =∆ f Õ(x) = 5f(x).

So e is quite a special number! In fact, it’s the only number such a that the derivative
of ax is equal to ax itself.

That’s what’s so “natural” about e, and why we call ln, or log base e, the “natural
log.”1

1
By the way, you might have wondered why “natural log” is written ln as opposed to nl. Well,

ln comes from the French, logarithme naturel, which you might guess means natural logarithm. But

just like in Spanish, the order of the adjective and noun are flipped. (In Spanish, it’s logaritmo
natural.) Hence the ln, as opposed to nl.
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6.8 Why ex is its own derivative

I have claimed that the derivative of ex is itself. How might we see that?
First, let f(x) = ax, where a is some number. (It could be 2 or 3, but let’s ignore

what number it is exactly so that we can see a pattern.)
Then as usual, the derivative of f is computed by taking the limit of the di�erence

quotient:

f Õ(x) = lim
hæ0

f(x + h) ≠ f(x)
h

Plugging what f is, we find

f Õ(x) = lim
hæ0

f(x + h) ≠ f(x)
h

= lim
hæ0

ax+h ≠ ax

h

= lim
hæ0

axah ≠ ax

h

= lim
hæ0

ax ah ≠ 1
h

= ax lim
hæ0

ah ≠ 1
h

= ax lim
hæ0

aha0 ≠ a0

h

= ax lim
hæ0

a0+h ≠ a0

h

= ax lim
hæ0

f(0 + h) ≠ f(0)
h

= axf Õ(0).
(6.8.1)

In other words, the derivative of ax is always given by the value of ax times the
derivative of ax at zero.

In other words, the derivative of ax is pretty much the same thing as ax, but
scaled by whatever the derivative at x = 0 is.

We can draw the graphs of f(x) = ax for di�erent values of a:
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The tangent line at x = 0, for each value of a, is drawn. Note that the tangent line
has negative slope at a = 0.8 (when a < 1), is flat—and hence has slope zero—when
a = 1, then the slope keeps getting positive, and bigger and bigger, as a increases.

Thus, for some value of a, the slope must equal exactly 1!
And why does that matter? Well, for that value of a, we thus have that f Õ(0) = 1.

Hence for that value of a, f Õ(x) = f(x).
You can define e to be the value of a for which the limit of (ah ≠ 1)/h as h æ 0

is given by 1. This is probably the craziest way you’ve ever seen a number defined,
and it really takes a very clever person to think up of the existence of such a number
without constructing it. But indeed, we have done this as a civilization, and we can
now utilize it.
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6.9 For next time
You should be comfortable finding derivatives of functions involves ex and ln. For
example, you should be able to find f Õ for each of the following functions f :

(a) f(x) = ex

(b) f(x) = e3x

(c) f(x) = e3x+2

(d) f(x) = 3ex

(e) f(x) = 5x

(f) f(x) = 53x

(g) f(x) = ln(x)

(h) f(x) = ln(3x)

(i) f(x) = ln(x + 3)

(j) esin(x)

(k) ex2

(l) ln(sin(x) + cos(x))

(m) ln(sin(x))

(n) ln(x3 ≠ x)
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