Lab exercises: Derivatives of inverse functions, exp and ln

Exercise 0.0.1 (Practice with derivatives). Compute the derivatives of the following functions.

- (a) e^x (e) $\ln(x)$ (i) e^{x^2+8}
- (b) $3e^x$ (f) $3\ln(x)$ (j) $\ln(\cos(x))$
- (c) e^{3x} (g) $\ln(3x)$ (k) $e^{\sin(x)}$
- (d) e^{3x+5} (h) $\ln(3x+5)$ (l) $e^{\cos(x)}$

Exercise 0.0.2 (Practice with derivatives). Compute the derivatives of the following functions.

- (a) $\ln(\cos(x)^2 + \sin(x)^2)$
- (b) $e^{\cos(x)^2 + \sin(x)^2}$
- (c) $\cos(e^x) + \ln(x^3 \sin^2(x))$

(d)
$$(\ln(3x))^3 + (e^{\sin(x)})^2$$
.

Exercise 0.0.3 (Using inverses to compute more derivatives). This is a fun one.

- (a) Let $f(x) = x^3$ and $g(x) = x^{1/3}$. Compute f(g(x)) and g(f(x)).
- (b) Using the chain rule cleverly¹, tell me g'(x).
- (c) Let $f(x) = x^4$ and $g(x) = x^{1/4}$. Using the chain rule cleverly, tell me g'(x).
- (d) Let $f(x) = x^5$ and $g(x) = x^{1/5}$. Using the chain rule cleverly, tell me g'(x).
- (e) Suppose n is some positive integer². Can you tell me the derivative of $g^{1/n}$?
- (f) How does your answer compare with the "power law" you already knew?

¹The same way we discovered the derivative of $\ln(x)$ once we knew the derivative of e^x . ²such as 2, 3, 4, 5, 6, 7, 8, 13, 1002,

Exercise 0.0.4 (Word problem: Population growth). When a new species is introduced into an ecosystem, we sometimes use exponential functions to predict the population growth. Below is a function modeling the population growth of a family of 10 cockroaches who have found a new home.

$$P(t) = 10e^{\frac{\ln(2)}{5}t}$$

Here, P is in units of cockroaches, and t is in units of weeks.

- (a) What are the units that P'(t) is measured in?
- (b) According to this model: At t = 0 weeks into the cockroaches' stay, at what rate is the population growing?
- (c) According to this model: At 1 week into the stay, at what rate is the population growing?
- (d) According to this model: At 2 weeks into the stay, at what rate is the population growing?
- (e) According to this model: How many cockroaches will there be in this home after 3 weeks? (This requires no calculus!)

Exercise 0.0.5 (Challenge problems). For every function f below, think of a function F for which F' = f.

(a) 2x (f) (x-2)(x-3)(b) x (g) $\frac{1}{11}(2x-9)(x^2-9x)^{10}$ (c) $3x^2-7x+9$ (h) $(\sin(x)+e^x)(-\cos(x)+e^x)^{13}$ (d) $\sin(x)+\cos(x)$ (i) $xe^{(x^2)}$ (e) $\frac{1}{3}\sin(x)+4\cos(5x)$ (j) $e^x\sin(e^x)$