Lab exercises: Derivatives of inverse functions, exp and \ln

Exercise 0.0.1 (Practice with derivatives). Compute the derivatives of the following functions.
(a) e^{x}
(e) $\ln (x)$
(i) $e^{x^{2}+8}$
(b) $3 e^{x}$
(f) $3 \ln (x)$
(j) $\ln (\cos (x))$
(c) $e^{3 x}$
(g) $\ln (3 x)$
(k) $e^{\sin (x)}$
(d) $e^{3 x+5}$
(h) $\ln (3 x+5)$
(l) $e^{\cos (x)}$

Exercise 0.0.2 (Practice with derivatives). Compute the derivatives of the following functions.
(a) $\ln \left(\cos (x)^{2}+\sin (x)^{2}\right)$
(b) $e^{\cos (x)^{2}+\sin (x)^{2}}$
(c) $\cos \left(e^{x}\right)+\ln \left(x^{3}-\sin ^{2}(x)\right)$
(d) $(\ln (3 x))^{3}+\left(e^{\sin (x)}\right)^{2}$.

Exercise 0.0.3 (Using inverses to compute more derivatives). This is a fun one.
(a) Let $f(x)=x^{3}$ and $g(x)=x^{1 / 3}$. Compute $f(g(x))$ and $g(f(x))$.
(b) Using the chain rule cleverly ${ }^{1}$, tell me $g^{\prime}(x)$.
(c) Let $f(x)=x^{4}$ and $g(x)=x^{1 / 4}$. Using the chain rule cleverly, tell me $g^{\prime}(x)$.
(d) Let $f(x)=x^{5}$ and $g(x)=x^{1 / 5}$. Using the chain rule cleverly, tell me $g^{\prime}(x)$.
(e) Suppose n is some positive integer ${ }^{2}$. Can you tell me the derivative of $g^{1 / n}$?
(f) How does your answer compare with the "power law" you already knew?

[^0]Exercise 0.0.4 (Word problem: Population growth). When a new species is introduced into an ecosystem, we sometimes use exponential functions to predict the population growth. Below is a function modeling the population growth of a family of 10 cockroaches who have found a new home.

$$
P(t)=10 e^{\frac{\ln (2)}{5} t}
$$

Here, P is in units of cockroaches, and t is in units of weeks.
(a) What are the units that $P^{\prime}(t)$ is measured in?
(b) According to this model: At $t=0$ weeks into the cockroaches' stay, at what rate is the population growing?
(c) According to this model: At 1 week into the stay, at what rate is the population growing?
(d) According to this model: At 2 weeks into the stay, at what rate is the population growing?
(e) According to this model: How many cockroaches will there be in this home after 3 weeks? (This requires no calculus!)

Exercise 0.0.5 (Challenge problems). For every function f below, think of a function F for which $F^{\prime}=f$.
(a) $2 x$
(f) $(x-2)(x-3)$
(b) x
(g) $\frac{1}{11}(2 x-9)\left(x^{2}-9 x\right)^{10}$
(c) $3 x^{2}-7 x+9$
(h) $\left(\sin (x)+e^{x}\right)\left(-\cos (x)+e^{x}\right)^{13}$
(d) $\sin (x)+\cos (x)$
(i) $x e^{\left(x^{2}\right)}$
(e) $\frac{1}{3} \sin (x)+4 \cos (5 x)$
(j) $e^{x} \sin \left(e^{x}\right)$

[^0]: ${ }^{1}$ The same way we discovered the derivative of $\ln (x)$ once we knew the derivative of e^{x}. ${ }^{2}$ such as $2,3,4,5,6,7,8,13,1002, \ldots$.

