
Lecture 3

Derivatives, and derivatives of
polynomials

We’ll start with some review to get ourselves situated. The new material for today
starts in Section 3.2.

3.1 Review
We’ve been using some notation like f(x), and talking about graphs. Let’s make
some of these ideas explicit. This also serves as a review of what you’ve learned in
some past classes.

Below is the graph of a function f .

As you may have learned in a previous class, a choice of a number, x, determines
a point on the graph! The point is determined by moving x units along the x-axis,
and then moving f(x) units vertically. The symbol we use for this point is:

(x, f(x)).

3
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(x, f(x))

x

f(x)

In the above picture, x is some negative number, and f(x) happens also to be some
negative number. Moreover, because f is a function (so its graph passes the vertical
line test) if P is a point on the graph of f , we may write the coordinates of P as

P = (x, f(x))

for some number x.
Because a number x determines a point P on the graph of f , and because the

point P determines x, we will often talk about how a function behaves “at x”
instead of how the function behaves at P .

3.1.1 Slopes of secant lines
We talked last time about secant lines, too. So let’s review the notation.

Let’s say somebody chooses another point Q on the graph of f .

P

Q

We may ask about the horizontal di�erence between P and Q—that is, what is the
di�erence between the x-coordinate of P , and the x-coordinate of Q? Whatever it
is, let us call it h:

h = The di�erence between the x-coordinates of P and Q.
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So that the x-coordinate of Q is given by x + h.

P

Q

x x + h

h

(Note that h could be a positive or a negative number. In our pictures, h happens
to be positive.) Then the coordinates of Q are given by:

Q = (x + h, f(x + h)).

(x, f(x))

(x + h, f(x + h))

As we saw last time:

Proposition 3.1.1. the slope of the secant line through P and Q is given by the
formula

f(x + h) ≠ f(x)
h

.

Remark 3.1.2. In these notes, you will see me label sections by “Remarks” or
“Propositions.” (There will be other labels you’ll see as the class goes on.)

A “Remark” is just a comment I would like to make.
A “Proposition” is a term used throughout mathematics. A Proposition is a

statement that is true, and useful for getting an idea for what’s going on, and also
not too di�cult to convince somebody of. For many students, you won’t lose too
much sleep if you replace the word “Proposition” by the word “Fact,” but it is also
very healthy to wonder why certain facts are true. If the fact is a Proposition, I
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promise you will be able to see why the fact is true if you spend a reasonable amount
of time thinking it through.

A “Proof” is a series of sentences of equations to convince you that the Proposition
is true.

Proof. The slope of the secant line is given by “rise over run.” The rise is the di�erence
in the y-coordinates of P and Q, so

rise = f(x + h) ≠ f(x).

The run is the di�erence in the x-coordinates of P and Q, so

run = (x + h) ≠ x = h.

(x, f(x))

(x + h, f(x + h))

run

rise

Then
rise
run = f(x + h) ≠ f(x)

h
.

Remark 3.1.3. The above proposition is useful because it takes a geometric idea
(like drawing lines through points of graphs) and converts it into algebra (e.g., a
formula).

For example, even if you had no idea what the graph of f looked like, if somebody
gives you a formula for f , you can now compute the slope of a secant line. This is very
powerful. It takes a lot more time to try to visually draw and measure something,
than to just compute it using algebra.

Because we’ll see this fraction a lot, we gave it a name: f(x+h)≠f(x)
h is called a

di�erence quotient. You became familiar with this expression for today’s lecture.
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3.1.2 The slopes of tangent lines
So let’s choose a function f and a point P on the graph of f .

Remember that the tangent line to f at P is the line that the secant lines through
P and Q approach as Q gets closer and closer to P . Well, if a bunch of lines approach
a single line, then it stands to reason that the slopes of the those lines approach the
slope of the single line.

Well, how can we talk about what it means for “Q to approach P”? Remember
that, earlier, we chose h to be the horizontal di�erence between P and Q. So if the
point Q is approaching P , then surely h is shrinking to zero!

On the other hand, we saw that the fraction f(x+h)≠f(x)
h is the slope of the secant

line between P and Q.
So what we need to understand is the following:

Question 3.1.4. How does the number f(x+h)≠f(x)
h behave as h becomes closer and

closer to zero?

Warning 3.1.5. Note that the fraction above has h in the denominator. In other
words, you cannot just plug in h = 0 into the fraction. (One of the golden rules of
mathematics is: You cannot divide by zero.)

3.1.3 The derivative (using words)
This question above (Question 3.1.4) is at the heart of calculus.1

Definition 3.1.6. Let f be a function, and x a number. Then the derivative of f
at x is the number that f(x+h)≠f(x)

h approaches as h gets closer and closer to zero (if
such a number exists).

Remark 3.1.7 (What is a definition?). A definition is, as you know, something
you usually find in a dictionary. In a set of math notes, or in a math textbook, a
definition is like a shortcut.

For example, the above definition of a derivative is very wordy! Too many words.
So instead of saying all that (“the number that this fraction approaches as h goes to
zero,” if it exists) we get to just say “the derivative.” Isn’t that a lot shorter?

For example, I could say “Erica is my friend,” rather than saying “Erica is some-
one with whom I have a good relationship and with whom I sometimes hang out.” If
a mathematician were to introduce the word friend in a textbook, they might write:

1
Really, the heart of half of calculus. The other half of calculus is devoted to integrals, which

we’ll see later on this semester.
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Definition. Let P be a person. Then P is called a friend if P is a person with
whom you have a good relationship and with whom you sometimes hang out.

Just as a visual reminder, here is what’s geometrically happening as “h approaches
zero”:

P

Q

h
P

Q

h
P

Q

h

Because h is the di�erence in the x-coordinates of P and Q, as h approaches zero, P
and Q are getting closer and closer. And remember, we are not moving P around;
we’re just letting Q move. So “as h approaches zero,” is a way to say “as Q moves
closer to P .”

3.1.4 The derivative (using limit notation)
Our definition of limit is a mouthful. That’s why we also invent notation to make
things easier. For example, f(x) = 5x3 + 3x + 1 if far easier to see than “let f be
a function that takes a number, cubes it, multiplies the result by 5, then takes the
original number, multiplies it by 3, then adds that, then finally adds 1 to all that
previous stu�.” So here is the notation we will be using in this class:

Definition 3.1.8 (The derivative, using limit notation). Let f be a function and x
a number. Then the derivative of f at x is the number

lim
hæ0

f(x + h) ≠ f(x)
h

if it exists.

This notation is read “the limit as h approaches 0 of f(x+h)≠f(x)
h .” This is just

notation for now, and you’re not expected to have a deep understanding of this
notation yet. We’ll get more intimate with this notation later in the semester.
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3.1.5 Example
Let’s choose f(x) = x2 + 10, and x = 3. Then

f(3 + h) ≠ f(3)
h

= ((3 + h)2 + 10) ≠ (32 + 10)
h

= 32 + 2 · 3h + h2 + 10 ≠ 32 ≠ 10
h

= 6h + h2

h
.

Now, the question is, how does this fraction behave as h approaches zero? Here’s
the thing: Whenever h does not equal zero, the above fraction can be simplified:

6h + h2

h
= 6h

h
+ h2

h
= 6 + h.

So, now we ask:
Question. What does 6 + h become as h approaches zero?
Well, as h gets smaller and smaller, 6 + h becomes a number closer and closer to

6. So the answer to the question is: 6 + h becomes 6 as h approaches zero.
This is our first derivative that we’ve ever computed! The derivative of f(x) =

x2 + 10 at x = 3 is given by 6.

3.1.6 Summary
Whenever you’ve solved a problem, it’s good to look back on what you did.

1. We first wrote out the di�erence quotient f(x+h)≠f(x)
h and plugged in x = 3.

2. We simplified it as far we could, keeping in mind that we should not divide by
h. We ended up with 6h+h2

h .

3. We then tried to understand the behavior of the fraction when h does not equal
zero. This is a great thing to do, because when h does not equal zero, we can
simplify the fraction when the numerator has h in every term. We ended up
with having to understand how 6 + h behaves as h equals zero.

4. Well, we can reason out that as h approaches zero, 6 + h approaches 6. And
that’s our answer.

The notation we can use for this is:

lim
hæ0

f(3 + h) ≠ f(3)
h

= 6

.
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3.2 Notations and language for the derivative
Because the derivative is something we’ll be using so much, we’re going to want some
briefer notation. Here are the most common notations used for derivatives:

Notation 3.2.1. Let f be a function and x a number. Then the derivative at x is
denoted by any of the following:

• f Õ(x)

• df
dx(x)

•
1

d
dxf

2
(x).

The above notations all mean the same thing.
The notation we’ll use most often is f Õ(x). This is read “f prime of x.”
The notation df

dx is read “dee e� dee ex.”
The notation d

dxf is read “dee dee ex of f.”
Sometimes, we will give functions di�erent names – instead of f , we may use a

letter like g, or h, or A. And, we may also use a di�erent letter for the input variable
– instead of x, we may use t (especially if the function takes time as an input), or s.

The notation f Õ doesn’t tell you what the name of the input variable is. But the
notation df

dt makes it clear that the input variable is t. So does the notatoin d
dtf .

When we want to be clear about the name of the input variable, we say that df
dt is

the derivative of f with respect to t.
For example, we say that df

dx is the derivative of f with respect to x.

Example 3.2.2. In lab you saw that if f(x) = 3x + 2, then the derivative of f at 2
is given by 3. In other words,

f Õ(2) = 3.

You also saw in lab that if g(x) = 5x2, then the derivative of g at 2 is given by 20.
So

gÕ(2) = 20.

(That is, “g prime of 2 is 20.”) You could also have written

dg

dx
(2) = 20.
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3.3 (Intuition) The derivative as a function
In lab, you probably plugged in a value for x, and then evaluated the di�erence
quotient. For example, for g(x) = 5x2, to evaluate the derivative at x = 2, you
probably began by writing out the fraction

g(2 + h) ≠ g(2)
h

= 5(2 + h)2 ≠ 5(2)2

h
.

But one think you could also have done, is to not plug in x = 2, and just leave it as
x. It may feel a little strange to have two variables (both x and h) floating around,
but we can still treat them as numbers and perform our calculations:

g(x + h) ≠ g(x)
h

= 5(x + h)2 ≠ 5x2

h

= 5x2 + 10xh + 5h2 ≠ 5x2

h

= 10xh + 5h2

h
.

This final expression, as usual, simplifies when h ”= 0 (i.e., when h does not equal
zero):

10x + 5h.

Then, as h approaches zero, the expression 10x + 5h becomes 10x. So we conclude:

The derivative of g at x is given by 10x.

Or, using the “prime” notation we just learned, we can write:

gÕ(x) = 10x.

But wait! This gÕ is a new function!
What do I mean? Remember that a function is something that eats a number,

and spits out another number. For example, when we write f(x) = 3x, we mean
that f is a function that takes in a number, then spits out three times that number.
Likewise, g(x) = 5x2 is a function that has you input a number (called x) and that
squares it, then multiplies it by five (5x2).

Likewise, we see that gÕ is something that will take in a number (called x) and
output a new number (called 10x).

Upshot. If f is a function, then f Õ is a new function.
Terminology. If f is a function and x is a number, then the number f Õ(x) is

called the derivative of f at x. On the other hand, the function f Õ is called the
derivative of f .
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Remark 3.3.1 (Intuition). So what is up with this “new function” called the deriva-
tive of f? Graphs help us think intuitively, especially if we like visuals.

A function f can be represented by a graph, as you know. The new function f Õ

tells us – for every number x – what the slope of the tangent line is at the point x
(of the original function f).

3.4 Interpretation of derivatives
We have seen that the slope of a tangent line should be interpreted as an instanta-
neous rate of change. So f Õ is a function which – at a point x, tells you the rate at
which f is changing at x. And f Õ(x) is that rate.

Example 3.4.1. Suppose f is a function which describes the position of a train at
time t – specifically, for every time t, the number f(t) is how far along the train is
along a track. Let’s assume t is measured in minutes and f(t) is in units of feet.

Then f Õ(t) naturally has units of feet per minute (remember that f Õ(t) represents
the slope of the tangent line at t, and slopes have units!). Indeed, f Õ(t) is a function
that tells us the speed of the train at time t, in feet per minute.

Example 3.4.2. Suppose h(x) is the total cost (in dollars) of producing x many
Tickle Me Elmo dolls (in “dolls”). Though we of course only produce 1 doll, 2 dolls,
3 dolls, and not – say – 4.32 dolls in real life, it is very common to model h using a
function that knows how to take in numbers like 4.32.

Then hÕ(x) approximates the increase in cost associated to producing one more
doll when you are already producing x many dolls.

This is called the marginal cost in economics and business – and it is rather subtle.
Keep in mind that it is often cheaper to make one more doll if you are already going
to produce 10,000 dolls, than to produce one more doll if you are only going to
produce 10 dolls.

The unit of hÕ(x) is “dollars per doll.”

3.5 Basic derivative laws (computing our first deriva-
tives)

Our ultimate goal in life (just kidding—our goal in this class) is to take a function
f , and to be able to understand the new function f Õ. That is, to understand the
derivative of f .
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Functions f can be complicated. So it’ll be useful to understand how to compute
derivatives in the simplest of situations. Indeed, much of the computational2 content
of a calculus class is centered around being given a function f , and being able to
compute its derivative.

Here, I’m going to tell you some basic computational tools we can use to compute
derivatives. In many textbooks, these tools are often called “laws.” I don’t like this
word, because it makes these tools feel handed down to you by some higher authority
(like a textbook or a professor). They are not. They are fundamental truths of nature
that you could have discovered yourself.

Here are some of the most basic laws about how to write f Õ given f :

3.5.1 Derivatives of powers
In lab, we have already computed the derivative of a few functions. Let me summa-
rize some of what we have already computed, and add on some more examples of
derivatives, to the following table:

Table 3.1: Derivatives of some functions – for example, the above table tells us that
the derivative of x4 is the function 4x3.

f(x) f Õ(x)
x2 2x
x3 3x2

x4 4x3

x5 5x4

I want to emphasize these are not just answers that a professor is spitting out at
you. These are answers you could compute yourself. To see more details on how, see
Section 3.8

You probably see a pattern – try taking a moment to guess what the derivative
of x6 is. How about x13?

Proposition 3.5.1 (Power law). If n is any whole number, the derivative of xn is
the function

nxn≠1.

2
Remember that in this class, I emphasize three ways to think about every idea – intuition,

computation, and interpretation.
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In other words, if you have a function called “raise x to the nth power,” its
derivative is computed by a function which raises x to the (n ≠ 1)st power – i.e., it
raises x to one less power – and also scales the function by n.

Example 3.5.2. If f(x) = x13, then f Õ(x) = 13x12.

Example 3.5.3. This example is a really great review of exponents. Remember that
anything raised to the 0th power equals 1. For example, 50 = 1. And x0 = 1. And
(3x2 + 9x + fi)0 = 1.

Also remember that anything raised to the 0th power is itself. For example,
51 = 5, and x1 = x, and (3x2 + 9x + fi)1 = 3x2 + 9x + fi.

The power law works when n = 1: If f(x) = x1 = x, then f Õ(x) = 1x0 = 1 ·1 = 1.
But we’ll see later on why you shouldn’t need the power law to compute the derivative
of x. There are many, many ways to see that the derivative of x is 1.

Example 3.5.4 (n = 1). If f(x) = x, then f Õ(x) = 1.

Example 3.5.5 (n = 2). If f(x) = x2, then f Õ(x) = 2x.

Example 3.5.6 (n = 3). If f(x) = x3, then f Õ(x) = 3x2.

Example 3.5.7 (n = 4). If f(x) = x4, then f Õ(x) = 4x3.

Example 3.5.8 (n = 5). If f(x) = x5, then f Õ(x) = 5x4.

This is a pattern that you’ll have to get used to. You will see it all the time in
this class. Make sure you know the power law!

Remark 3.5.9. I have never found a good physical or visual argument for why the
power law is true. The only reason it’s true—that I know of—is algebra. (You’ll see
this in Section 3.8.) This kind of makes sense. Functions of the form x5 are defined
very algebraically. They’re not defined using geometric operations like “find the size
of an angle,” so Mother Nature doesn’t give us many immediate ways to think about
functions like x5 geometrically.

3.5.2 Constant functions have zero derivative
Suppose f(x) = 3. This is called a “constant function,” because no matter what
the input number is, f constantly outputs 3. The graph of a constant function is a
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horizontal line.

(Above, in blue, is an image showing the graph of f(x) = 3.) Of course, this line itself
has slope zero. In fact, any secant line to f is just the graph of f itself! Accordingly,
the tangent line to f is f itself. So f Õ is another constant function, with value zero.

Law. If f is a constant function, then f Õ = 0. That is, regardless of x, f Õ(x) = 0.

Example 3.5.10. If f is the constant function given by f(x) = fi, then f Õ is the
function given by f Õ(x) = 0.

Remark 3.5.11. We can think about this physically, too. If f(t) represents the
position of someone at time t, then f being constant means that person isn’t moving.
So the speed of that person is always zero—that is, the derivative of f is zero.

(Remember that we saw that slopes of lines had to do with speed, when looking
at a position-versus-time graph for motion with constant speed.)

3.5.3 Scale a function, scale the derivative
Suppose that f is some function. How is the derivative of f related to the derivative
of 5f? For example, how is the derivative of x3 related to the derivative of 5x3?

Law. (af)Õ = a(f Õ) (for any number a).
Let’s parse this law. It means that if I take a function, multiply it by a number

a, and then take the derivative, I’ll get the same answer as first taking the derivative,
then multiplying by a.

Example 3.5.12. Suppose f(x) = 5x2. We saw earlier that f Õ is the function given
by f Õ(x) = 10x. If we let g(x) = 10x2 = 2f(x), then gÕ = 2f Õ, so gÕ(x) = 2f Õ(x) =
20x.

Sometimes, multiplying by a number a is called “scaling by a.” So this law says
that if you scale a function, you scale its derivative.



16 LECTURE 3. DERIVATIVES, AND DERIVATIVES OF POLYNOMIALS

x x

Above, on the left is a picture of the graph of a function f(x) = x2 ≠ 2, together
with a tangent line at x = 1, in red. On the right is the picture of a graph of a
function 2f , that is, 2x2 ≠ 4, together with a tangent line at x = 1 (the same x as
for the lefthand picture). Though it’s not obvious from the pictures, the slope of
the tangent line on the right is twice the slope of the tangent line on the left. In
other words, the slope of the tangent line is scaled by the same factor by which the
function was scaled.

Remark 3.5.13. We can again think about this physically. Suppose f(t) is a func-
tion that again tells you your position of at time t. What would it mean to scale f
by a number a? Well, it means that your position is a times as far at any given time.
(For example, if a = 3, then your position would be triple what it would have been
with the unscaled, original function.) What the scaling law says is that if you’re
always ending up three times as far, you’re always moving three times as fast.

Remark 3.5.14. Here is another way to think about the scaling law – visually. Take
an image of a graph, and stretch it vertically by a factor of a (as though it were made
of rubber). (If a is less than 1, this would involve shrinking, not stretching, the graph
vertically.) This will result in stretching whatever tangent line you are interested,
also by a factor of a – thus, whatever rise over run you compute will have a “rise”
increased by a factor of a, and an unchanged “run.” So the slope is multiplied by a
factor of a.

3.5.4 Add functions, add derivatives
Law. (f + g)Õ = f Õ + gÕ.

That is, if you add two functions, and then take their derivative, you’ll get the
same answer as taking the derivative of each function, and then adding them.
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Remark 3.5.15. This is a natural-looking law, but it’s one of the harder ones to
justify using pure geometry. It’s easier to justify if you think physically.

Suppose that f(t) represents the position of a train at time t.3 This could be
measured, for example, by someone outside the train, observing the train.

Suppose further that there is a cheetah inside the train, and g(t) represents the
position of the cheetah “relative to the train” at time t. This is measured, for
example, by somebody inside the train, observing the cheetah. 4

The the function f +g, which at time t outputs f(t)+g(t), represents the position
of the cheetah.5 This could be measured, for example, by somebody outside the train,
with x-ray vision, observing the cheetah.

So how are the speed of the train, the speed of the cheetah relative to the train,
and the actual speed of the cheetah, all related?

Well, the actual speed of the cheetah would be the sum of the speed of the train
with how fast the cheetah is moving relative to the train!6

Remember that the slope of a line has to do with speed. We saw this for position-
versus-time graphs of objects moving with constant speed. And if our position-versus-
time graph is a curve, then we can interpret the derivative (which is the slope of the
tangent line) as the speed that a (highly accurate) speedometer would show at the
time.

So this physical “thought experiment” displays one physical argument why the
derivative of a sum of functions should be the sum of their derivatives.

3.6 Derivatives of polynomials
In groupwork and in lab, you will practice taking derivatives of polynomials (without
using di�erence quotients anymore).

What is a polynomial? Here are examples:
3
For example, it could represent how far the center of the train has moved along the track from

a departure station.
4
To make things even more concrete, g(t) could represent how far away the cheetah is from the

center of the train, at time t. In any case, if the cheetah is just seated in its passenger seat, g(t)
would be constant.

5
For example, how far the cheetah is from the departure station.

6
For example, if the train is moving 60 miles per hour to somebody watching the train from

outside, but if the cheetah is just sitting still inside the train, then the outside observer with x-ray

vision would perceive the cheetah to be moving at 60 miles per hour. On the other hand, if an

inside-the-train observer saw the cheetah running 60 miles per hour in the direction opposite the

train’s front, then to an outside observer with x-ray vision, the cheetah would look stationary, as

though it were running on a treadmill.
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• 1

• 3

• fix

• ≠3x

• 2x

• x + 2

• 9x2 + 1
2x

• fix2 + 2x + 9

• 3x3 + sin(1)x2 + cos(fi)x + fi3.

The key thing to note about all the above expressions is that they all look like

ax3 + bx2 + cx + d

where a, b, c, d are arbitrary numbers. (They could be zero, they could be fi3, what-
ever!) In fact, there’s no limit to the power of x in a polynomial—another example
is something like

x10,003 + x2 + 1.

The important thing is that each time the symbol x shows up, the exponent of x is
some integer that’s not negative, and that x isn’t inside some other function like sin,
or ex, et cetera.

Remark 3.6.1. In principle, polynomials are supposed to be the “simplest” kinds
of functions. For example, if f(x) = 3x3 + 2x2 + x ≠ 9, you would be able to tell me
things like f(3) and f(≠2) by hand. You just need to multiply and add a lot.7

They key thing to note is that a polynomial function is always a (i) sum of (ii)
scaled versions of (iii) xn for some n.

And the derivative rules from today show us how to deal with sums, with scaling,
and with “power” functions like xn. So we actually now know how to take derivatives
of polynomial functions!

7
On the other hand, if f(x) = sin(x), you probably would not be able to tell me, by hand, what

sin(3) is. You would need a calculator! We’ll see later in this class, if we’re lucky, how you might

able to calculate sin(3) to many decimal places without a calculator.
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Example 3.6.2. Find the derivative of f(x) = 3x2 + x ≠ 9.
Answer. f is a sum of three terms: 3x2, x, and ≠9. So let’s try to take the

derivative of each.
The derivative of -9 is easy. This is a constant function, so its derivative is zero.
The derivative of x is also easy. For example, the graph of g(x) = x is just a line

with slope 1, so its derivative is always 1. You could also have used the power law if
you wanted, because x = x1.

Finally, 3x2 is 3 times x2. We know that the derivative of x2 is given by 2x by
the power law. So, scaling this by 3, we conclude that the derivative of 3x2 is given
by 6x.

Putting this all together:

(3x2 + x ≠ 9)Õ = (3x2)Õ + (x)Õ + (≠9)Õ

= 3 · (x2)Õ + 1 + 0
= 3 · 2x + 1 + 0
= 6x + 1 + 0
= 6x + 1. (3.6.1)

And that’s it!

Example 3.6.3. Find the derivative of f(x) = x5 ≠ 7x4 + 2x + 13.
I’ll tell you that the answer is 5x4 ≠ 28x3 + 2. Can you figure out why?

Example 3.6.4. Find the derivative of 7x3 ≠ fix ≠ 10 at 8.
In a problem like this, you need to not only compute the derivative (as a function

– so involving x) you must also compute its value (at x = 8).
We see that the derivative is

(7x3 ≠ fix ≠ 10)Õ = (7x3)Õ ≠ (fix)Õ ≠ (10)Õ = 21x2 ≠ fi.

Plugging in x = 8, we find that the derivative at 8 is

21(8)2 ≠ fi = 21 ◊ 64 ≠ fi = 192 ≠ fi.

So the answer is 192 ≠ fi.

Exercise 3.6.5. For each of the following functions, compute the derivative at x = 3.

(a) x3
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(b) x7

(c) 1

(d) x

(e) 5x2

(f) 7x

(g) 8x3

(h) 5x + 3

(i) 7x10 ≠ 9x2 + 1

(j) 10x99 ≠ cos(9)x2 + fi

(k) (x ≠ 3)(x + 10)

(l) (x ≠ 3)(x + 10)(x ≠ 1)

(m) (x ≠ 3)(x + 3)

3.6.1 What was the di�erence quotient all for?
You may have learned today that to take the derivative of x8, you can just write 8x7.
This is the power law. And that’s fantastic.

So you may question: Why did Hiro bother doing this “the complicated way” by
having you practice manipulating expressions like f(x + h) ≠ f(x) and dividing by
h?

The answer: Because “this complicated way” is what the derivative actually is.
Here’s a good analogy. You all know that 8 ◊ 7 = 56 – not because you quickly

drew out a large rectangular array of dots and counted the fifty-six dots. It’s because
you memorized, and became familiar with, the multiplication table.

But if you were to explain to a child what multiplication actually is, it would be
criminal to say “8 times 7 is just 56 and that’s the end of the story.” It’s not the end
of the story, nor the beginning. 8 times 7 represents the outcome of a real process
– either adding 8 to itself 7 times, or drawing an array of dots and counting the
dots, or computing the area of a rectangle with edge lengths 8 and 7. Multiplication
actually represents something.
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Likewise, I want you to know what the derivative actually represents. In future
classes, a professor may only care that you know that the derivative of x8 is 8x7, and
you may only care about what the professor will grade you on. But in real life, if
you ever use a derivative, you need to know what it actually means. The derviative
represents what happens to slopes of secant lines through P and Q as you move
Q closer and closer to P . And the di�erence quotient – along with the process of
making h shrink – is exactly the algebra that represents this geometric intuition.

3.7 For next time
For next time, you should be able to take derivatives of polynomials. You’ll get
plenty of practice in lab.

3.8 Bonus: Computing derivatives of powers
This is not a “required reading” section. It’s just to satisfy your itch – how do we
know that Table 3.1 is correct?

Let’s first do this in a concrete example – we’ll compute the derivative of f(x) =
xn when n = 4.

Remember, by definition the derivative is what the di�erence quotient approaches
as h goes to zero. So let’s first simplify the di�erence quotient:

f(x + h) ≠ f(x)
h

= (x + h)4 ≠ (x)4

h
.

This is the hardest step – what is (x + h)4? Well, it turns out we can be a little lazy
about it; we’ll see why in a second. But if you begin writing out what (x + h)4 is,
we see

(x + h)4 = (x + h) ◊ (x + h) ◊ (x + h) ◊ (x + h).
So I’m going to mysteriously ask: If we multiply all this out, what are the coe�cients
of x4, and what are the coe�cients of x3?

To have a term like “x4” pop up, we need x to be multiplied with itself 4 times:

(x + h) ◊ (x + h) ◊ (x + h) ◊ (x + h)

so multiplying the underlined terms together, we get x4. But how can we get an x3

to pop up? Well, there are four ways:

(x + h) ◊ (x + h) ◊ (x + h) ◊ (x + h)
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(x + h) ◊ (x + h) ◊ (x + h) ◊ (x + h)
(x + h) ◊ (x + h) ◊ (x + h) ◊ (x + h)
(x + h) ◊ (x + h) ◊ (x + h) ◊ (x + h)

and each of these four ways involves multiplying three xs against one h – so the x3

term will be of the form 4x3h. In other words, we’ve found that

(x + h)4 = x4 + 4hx3 + other stu�

where “other stu�” is the collection of the terms we haven’t accounted for yet. For
example, we haven’t talked about what we’ll get if multiply out:

(x + h) ◊ (x + h) ◊ (x + h) ◊ (x + h).

But note that the only terms we haven’t accounted for are terms with at least two h
being multiplied together. So whatever “other stu�” is, every term will have an h2

or an h3 or an h4 – some higher power of h – in it.
Upshot: f(x + h) = x4 + 4x3h+ stu� with higher powers of h. (Here, “higher

powers” means the power of h is at least 2.)
We can now return to computing the rest of the di�erence quotient. First, the

numerator:
f(x + h) ≠ f(x) = f(x + h) ≠ x4.

So based on our Upshot from above, we see that

f(x + h) ≠ f(x) = 4x3h + stu� with higher powers of h.

Thus

f(x + h) ≠ f(x)
h

= 4x3h + stu� with higher powers of h

h

= 4x3h

h
+ stu� with higher powers of h

h

= 4x3 + stu� with higher powers of h

h
(when h ”= 0).

Well, the term on the right involves taking a sum of higher powers of h, and dividing
by h. The result will be a sum of terms that all involve (multiples of) h, h2, h3, et
cetera. In particular, as h goes to zero, these terms will all go to zero! To summarize:

4x3 + stu� with higher powers of h

h
æ 4x3 + 0 (as h approaches 0).
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So we see that the derivative is indeed 4x3.
Here is a formal proof demonstrating that n doesn’t have to equal only 4. The

following is a proof8 for any n Ø 1:

Proof of Power Law (Proposition 3.5.1). Let n be a whole number of size at least 1.
Let us note that we can compute (x + h)n as a product of n copies of x + h – and in
doing so, we find that

(x + h)n = xn + nxn≠1h + terms with higher powers of h.

Thus,
(x + h)n ≠ xn = nxn≠1h + terms with higher powers of h.

Dividing this expression by h, we see that (when h ”= 0):

(x + h)n ≠ xn

h
= nxn≠1 + terms with h, h2, h3, ....

And as h approaches zero, the terms with h, h2, h3 all shrink as well; leaving

nxn≠1.

In other words, as h approaches zero, the di�erence quotient of f(x) = xn appraoches
nxn≠1. By definition, we have shown that the derivative of xn is nxn≠1. This is what
we wanted to prove.

8
A “proof” in mathematics is a demonstration that a fact is true. Most people live life asserting

facts willy-nilly without any justification. In mathematics, your professor should be able to justify

absolutely everything they tell you. That’s why I’m including this bonus section – to justify that

the power law is true.


