Lab: Computing derivatives by hand

There is one new vocabulary word I want to use in today's lab: Derivative.
Definition 2.0.4. Let f be a function and choose a number x. If there is a number which the difference quotient

$$
\frac{f(x+h)-f(x)}{h}
$$

approaches as h goes to zero, we call this number the derivative of f at x.
Lab Problem 1 (Lines). Let $f(x)=3 x+2$.
(a) What does the graph of f look like?
(b) Based on your previous answer, and based on the equation of f, what do you expect the slope of any secant line to be?
(c) Let $x=2$. What is the value of the fraction

$$
\frac{f(x+h)-f(x)}{h}
$$

for different values of h ? (Does it even depend on h)? What value does it take as h approaches zero?
(d) Do the same problem as above, but with $x=3$.
(e) For this function- $f(x)=3 x+2$ - does the derivative of f at x depend on which value of x you choose?

Lab Problem 2 (Parabolas). Now let $g(x)=5 x^{2}$.
(a) Let $x=2$. Does the fraction

$$
\frac{g(x+h)-g(x)}{h}
$$

simplify when h does not equal zero? What value does it take as h approaches zero? In other words, what is the derivative of g at 2 ?
(b) Do the same problem as above, but with $x=3$.
(c) Do the same problem as above, but with $x=4$.
(d) Do you notice a relationship between the derivative of g at x, and x ? Put another way, is there a formula that takes x as an input, and outputs the derivative of g at x ?

Lab Problem 3 (Parabolas again). Now let $q(x)=5 x^{2}+9$. (How is this function different from the previous function?)
(a) What is the derivative of q at $x=2$?
(b) Do the same problem as above, but with $x=3$.
(c) Do the same problem as above, but with $x=4$.
(d) Do you notice a relationship between the derivative of q at x, and x ? Put another way, is there a formula that takes x as an input, and outputs the derivative of q at x ?
(e) How does the derivative of q relate to the derivative of g ? How are q and g themselves related?
(f) What if we had added 5 , or 2 , or π, or one million to g ?

Lab Problem 4 (Adding functions). Now let $p(x)=5 x^{2}+3 x+2$. (How does this compare to the first two functions you studied- f and g ?)
(a) What is the derivative of p at $x=2$?
(b) Do the same problem as above, but with $x=3$.
(c) Do the same problem as above, but with $x=4$.
(d) Is there a formula that takes x as an input, and outputs the derivative of p at x ?
(e) How does the derivative of p relate to the derivatives of g and q ?

Lab Problem 5 (Cubics). Let $r(x)=x^{3}$.
(a) What is the derivative of r at $x=2$?
(b) Do the same problem as above, but with $x=3$.
(c) Do the same problem as above, but with $x=4$.
(d) Is there a formula that takes x as an input, and outputs the derivative of r at x ?

