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Preface

These are hand-written notes taken by Masato Tanabe based on lectures
delivered by myself in August of 2023 in Wakou City, Japan at RIKEN
iTHEMS. Some spoken commentary did not make it into the hand-written
notes, so for these, I refer the reader to the introductory text of each lecture.
The present work also contains some exercises.

I wanted to do something different from the previous times I was asked to
give a lecture series [14, 15, 16], so in these lectures I devoted the first week to
delving more into the combinatorial underpinnings of infinity-categories (also
known as quasi-categories after Joyal [5], and as weak Kan complexes after
Boardman-Vogt [2]). I tried to teach the subject the same way I learned it –
without knowing any category theory, and through combinatorial intuitions.
The aim was to lower the bar for entry.

In the second week I presented some applications to the study of smooth
manifolds and to symplectic/contact geometry. I tried when possible to illus-
trate why and how the theory of infinity-categories was useful in solving or
capturing concrete geometric problems. I presumptuously talked only about
results in which I was somehow involved. My intent was to be honest when
infinity-categories are and are not so necessary.

We hope the reader will be left wanting more. Lurie’s Higher Topos
Theory [8] and Higher Algebra [9] are the canonical references. I would in
fact recommend beginning with Higher Algebra. By studying the proofs
there (which faithfully cite the results of Higher Topos Theory) the technical
ingredients of [8] gain context. An evolving and highly readable reference,
also due to Lurie, is Kerodon [10].

These lectures would not have been possible without the significant hos-
pitality and efforts of the organizer, Taketo Sano, and of the staff of iTHEMS
RIKEN, especially Chika Oota. I would like to thank them for their generos-
ity. I would also like to thank both the online and in-person participants for
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their questions and engagement.
I give my thanks of course to Masato Tanabe for his wonderful notes.
I was supported by an NSF CAREER grant (DMS-2044557), an Alfred

P. Sloan Research Fellowship, a Texas State University Presidential Seminar
Award and Valero Award, and RIKEN iTHEMS.
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Lecture I

Introduction to higher algebra
for a general audience

I was asked to open the lectures by introducing our main topic to scientists
without a background in pure mathematics.

I emphasized that associativity is an amazing property of multiplication.
(Imagine having to parenthesize 100 matrices carefully before a computer
can compute their product.) At the same time, I disambiguated commuta-
tivity from associativity, giving an example – Rock Paper Scissors, and more
generally, competitions with 2-to-1 operations indicating winners – where
associativity fails but commutativity holds.

I then gave concrete examples of the notion of homotopy, and of algebraic
structures that only hold up to homotopy. The fundamental group was the
first example.

From theoretical physics (not “twisted” physics), the A model gives rise
to the Fukaya category. Here it was emphasized that being associative up to
homotopy is only so useful – for when deciding how to multiply 4 elements
a, b, c, d one finds two non-canonical homotopies relating (a(bc))d to, say,
(ab)(cd). This is drawn as the boundary of a pentagon in the notes, where
the edges of the pentagon are known homotopies coming from three-term
associativity. Thus one should – if one wants to unambiguously know why
computations give equivalent answers up to known homotopies – demand
extra data that exhibits these two non-canonical homotopies as themselves
homotopic. This higher homotopy is the interior of the pentagon. This
of course does not stop with four-term associativity; one will find a three-
cell to be necessary to unambiguously associate five terms, and so on. The
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Fukaya category supplies such cells for arbitrarily many terms, and thus is an
example of a so-called A∞-category (as opposed to, say, A4) for this reason.

The final example arose from a factorization-algebra-esque picture of a
topological quantum field theory. If one imagines a field theory to be able to
assign observables to every patch of space-time (drawn as R2 in the notes),
and if the observables only depend on the topological type of the patch of
space-time, one finds that the collection of observables has a commutative
structure that is only commutative up to non-canonical homotopies. In a two-
dimensional theory, this non-canonicity is detected by the presence of winding
numbers. In three dimensions, this winding number obstruction vanishes,
but there are inequivalent hemispheres nullifying winding numbers; thus a
π2 obstruction to commutativity appears. Such a structure in n dimensions
is called an En-algebra.

As a preview, I stated that the simplest version of factorization homology
allows us to create n-manifold invariants out of En-algebras. In fact, if one
takes En-algebras in a symmetric monoidal ∞-category with sifted colimits,
and wherein the symmetric monoidal structure commutes with sifted colimits
in each variable, every multiplicatively local-to-global invariant (i.e., every
⊗-excisive invariant) arises uniquely from an En-algebra.
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Lecture II

Infinity-categories

Here I tried to convey that you do not need to know much category theory
to begin the study of infinity-categories. Indeed, to any natural setting with
composition of maps, there are natural data (called commutative diagrams)
that admit a combinatorial description. This naturally led us to the notion
of simplicial set and of the nerve of a category.

I gave two ways to think about a simplicial set (using generators-and-
relations, or as a functor out of a category of linearly ordered sets). From
either perspective, it is easy to state what a map of simplicial sets is.

We studied examples: The n-simplex ∆n, explicitly computing ∆0 and
∆1. We also studied products of simplicial sets, with the example of ∆1×∆1

illustrating the power of the degenerate simplices.
After defining horns and the nerve of a category, I asserted that the theory

of classical categories is equivalent to the theory of simplicial sets satisfying
some unique-horn-filling condition. This is one sense in which combinatorics
may completely replace a theory of categories.

Then we saw that topological spaces give rise to simplicial sets by the
singular complex construction. Such simplicial sets satisfied a different horn-
filling condition, rendering them Kan complexs. In fact, mentioned in the
lectures was a fundamental fact of life: To a homotopy theorist, a topological
space may as well be a Kan complex (and vice versa).

Studying properties common to both the above examples, we defined the
notion of an infinity-category. I emphasized that the definition is purely
combinatorial. We saw the notion of functor, and of natural transformation
of functors.

We recommend Chapter 1 of Higher Topos Theory [8] for further reading.
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Exercises: Basics of
∞-categories

II.1 Homotopy

Fix two arrows f, g : X → Y in a simplicial set C. (Formally: Choose two
elements of C1 whose images under d0 agree, and whose images under d1
agree.)

Here are four ways to define a homotopy between f and g:

• (L) There exists a 2-simplex L in C such that

d0L = s0Y, d1L = g, d2L = f.

• (L’) There exists a 2-simplex L′ in C such that

d0L = s0Y, d1L = f, d2L = g.

• (R) There exists a 2-simplex R in C such that

d0L = g, d1L = f, d2L = s0X.

• (R’) There exists a 2-simplex R′ in C such that

d0L = f, d1L = g, d2L = s0X.

Example II.1.0.1. In case it helps, here is a picture of (for example) a
simplex L:

Y

X
f

//

g

55

Y

;C
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Here, the double-arrow is the degenerate 1-simplex s0Y , and this arrow has
a direction to indicate the ordering of the vertices of the 2-simplex.

The intuition is that a 2-simplex like this in the homotopy coherent nerve
(see next lecture) would represent a homotopy from idY ◦f to g.

(a) Suppose C is an ∞-category. Show that the existence of any one of the
above types of 2-simplices is equivalent to the existence of all other types.
(So for example an L exists if and only if an L′ exists.)

(b) Suppose C is an∞-category. Define two edges f, g (with the same domain
and codomain) to be homotopic if one type of 2-simplex (and hence all
types of 2-simplices) above exists. Prove this defines an equivalence
relation on the set of edges from X to Y .

Hint: At this point, you only have three ways of producing simplices –
by using degeneracy maps, by using face maps, and by using the horn-filling
condition.

II.2 Composition

An∞-category does not come with data that says “given two arrows f12 and
f01, here is how you define an arrow that deserves to be called f12 ◦ f01.”

In other words, it doesn’t define a preferred operation on the collection
of arrows called composition.

However, it does give data one can interpret as “an arrow equipped with
evidence that the arrow deserves to be called a composition.” Namely, given
f12 and f01, the weak Kan condition tells us there exists at least one triangle
filling the Λ2

1 horn given by the fij.

Given any such triangle T : ∆2 → C, we should interpret d1T as a can-
didate for a composition, and T as exhibiting the data witnessing d1T as
deserving of this title (of a composition).

(a) Let C be an ∞-category. Show that “composition is well-defined up to
homotopy.” More precisely, suppose that T and S are two 2-simplices
filling a fixed horn Λ2

1 → C. Show that d1T and d1S are homotopic (in
the sense of Exercise II.1).
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II.3 Associativity

(a) Convince yourself that a functor ∆1×∆1 → Top contains data that looks
like a “homotopy coherent” commutative square. (You can also replace
Top by any ∞-category, of course.)

Beware of a point of possible confusion: The diagonal 1-simplex of ∆1×
∆1 provides “more” data than one would naively expect in a homotopy
coherent square diagram.

(b) Exhibit an injection of simplicial sets ∆1 ×∆1 → ∆3.

(c) Using the interpretation of composition from Exercise II.2, convince your-
self that the weak Kan condition for Λ3

i demonstrates that composition
(of three morphisms) is associative up to homotopy.

II.4 Commentary

You should notice that all of your proofs above had, at their core, a choice
you could make because a horn-filling condition guaranteed the existence of
something. (This is not surprising – if your only hypothesis is an existence
condition, all your proofs should make use of existence.)

As we are about to see, more sophisticated categorical arguments will
require us to remember the particular choices we made in these existence
proofs. In other words, if something exists (e.g., a homotopy) we don’t want
to throw it away (e.g., forget the homotopy and remember only that two
things “are homotopic”). Combinatorially, this manifests in proofs where
you want to fill many horns – to do so, you’ll need to remember some faces
and horns you’ve already created.

II.5 Equivalence/isomorphisms

A morphism f : X → Y in an ∞-category is called an equivalence or an
isomorphism if there exists a morphism g : Y → X, and two 2-simplices S
and T such that

d0S = g d1S = s0X, d2S = f
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and

d0T = f d1T = s0Y, d2T = g.

We call g an inverse, or homotopy inverse to f .

(a) Let us say that X and Y are isomorphic (or equivalent) if there exists
an isomorphism from X to Y . Show that isomorphism is an equivalence
relation.

(b) Fix f . Show that any two choices of inverse g are homotopic.

(c) Let us call g a left inverse to f if there exists a 2-simplex S as above.
If f admits a left inverse g, and if g is an isomorphism, show f is an
isomorphism.

Hint: These exercises have obvious counterparts in classical category
theory. Thinking carefully about the proofs in the classical setting will give
you insight into what kinds of horn-filling you want to perform. As an even
more explicit hint, try to replace every equality you use in the classical setting
with a homotopy (e.g., simplex) in an∞-category. Finally, if this hint seems
unhelpful because you are not comfortable with classical category theory,
pretend that X and Y are groups, and that f and g are group homomor-
phisms.

II.6 Left and right horn-filling

(a) Suppose C is a Kan complex (and in particular, an ∞-category). Show
that every morphism in C is an isomorphism.

(b) Suppose C is a simplicial set satisfying the horn-filling condition for all
n and for all 0 ≤ i < n. (In particular, C is an ∞-category.) Show that
every morphism in C is an isomorphism.

In fact, any ∞-category for which every morphism is an isomorphism is
a Kan complex. Proving this by hand is too involved; there are slick tools
using fibration-style arguments that we’ll see later.
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II.7 Opposites

(a) Exhibit an isomorphism of the category ∆ to itself that is the identity on
objects, but “reverses the order of the morphisms.” (Motivation: Every
category has an opposite. Study the nerve N(C) of a category C and
N(Cop) of the opposite category; how are the face and degeneracy maps
are exchanged?)

Remark II.7.0.1. You can now tackle a version of Exercise II.6 while as-
suming the horn-filling condition for 0 < i ≤ n.
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Lecture III

Examples of infinity-categories
and functors

In this lecture we defined the infinity-category of topological spaces (and more
generally, the homotopy coherent nerve of a topologically enriched category).
We worked out the 0-, 1-, 2-, and 3-simplices in the homotopy coherent nerve
of topological spaces explicitly. (Note: the n = 3 case uses the notation ∆1,1,
but this should be ∆1 ×∆1.)

We also saw how to turn any dg-category into an infinity-category using
the dg nerve of Lurie.

Finally, we saw basic examples of functors of infinity-categories. We saw
how naturally functors can encode homotopy-commuting squares, homotopy-
coherent actions of groups, and local systems.

We cautioned that though a functor ∆1 ×∆1 → Top should be thought
of as a homotopy-commuting square, a functor of this form is not literally a
homotopy-commuting square. (See Example 1 of functors in the notes. In
the notation there, the homotopy f12 ◦ f01 ∼ f ′

12 ◦ f ′
01 results from a choice

of composite of the homotopies H and H ′.)
There was one technical point about how to define an ∞-category that

“correctly” captures the homotopy theory of chain complexes over an arbi-
trary base ring R (as opposed to, say, when R is a field). The usual homolog-
ical cautions – taking injective or projective chain complexes – apply here. I
did not fixate on this issue, as it was a bit tangential to my desire to show
that the combinatorial language of simplicial sets encodes homotopy-coherent
ideas with great precision.

We recommend Chapter 1 of Higher Topos Theory [8] and Section 1.3 of
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Higher Algebra [9] for further reading.
Note: I wanted to talk about (right) fibrations in this lecture, but this

was postponed to the next lecture.
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Exercises: Examples of
∞-categories

III.1 dg-nerves

Fix a dg-category A (say, over the integers).

(a) Write out explicitly all the data encoding a 3-simplex in the dg-nerve of
A.

(b) Verify that the dg-nerve of A is an ∞-category.

(c) Show that a functor between dg-categories induces a functor between the
nerves of the dg-category.

III.2 Homotopy coherent nerve

Fix a category C enriched over Kan complexes. (This means for all x, y ∈
ObC, hom(x, y) is a Kan complex, and composition is a map hom(y, z) ×
hom(x, y)→ hom(x, z) of simplicial sets.)

We define the homotopy coherent nerve N(C) of C identically to that for
a topologically enriched category (skipping all instances of Sing.)

It is a theorem that N(C) is an ∞-category.

(a) Verify that all inner 2-horns in N(C) can be filled.

(b) Verify that a functor between Kan-complex enriched categories induces
a functor between their nerves.
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III.3 The Kan complex C≃

Fix an ∞-category C.
Define C≃ ⊂ C to be the simplicial set whose k-simplices are defined as

follows:

• (n = 0). C≃
0 = C0.

• (n = 1). C≃
1 consists of those edges of C that are isomorphisms (Exer-

cise II.5).

• For all larger n, C≃
n consists of those n-simplices of C all of whose edges

are isomorphisms.

C≃ is a Kan complex. It is in fact the largest Kan complex contained
inside C.

(a) Show that (C×D)≃ ∼= C≃ ×D≃.

(b) Fix a Kan complex K. Exhibit a natural isomorphism

hom(K,C)
∼=←− hom(K,C≃) (III.3.1)

where hom denotes the set of simplicial set maps. (Here, naturality
means that the above isomorphism commutes with post-composition by
maps f : C→ C′ and with pre-composition by maps K → K ′.)

(c) Show that the inclusion of the category of Kan complexes into the cate-
gory of ∞-categories is a fully faithful left adjoint.

(d) Note that the righthand side of (III.3.1) is the set of 0-simplices of the
simplicial set Fun(K,C≃) (as introduced in this lecture). How would you
define a simplicial set on the lefthand side to enrich (III.3.1) into an
isomorphism of simplicial sets from Fun(K,C≃)? How does your answer
compare to Fun(K,C)≃?

III.4 The ∞-category of ∞-categories

(a) Fix two ∞-categories C and D. Verify that Fun(C,D) is a simplicial set
(by declaring its k-simplices to consists of simplicial set maps ∆k × C→
D).
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(b) Define a composition map Fun(D,E)× Fun(C,D)→ Fun(C,E).

(c) Assume that Fun(C,D) is an ∞-category whenever D is an ∞-category.
(This is a theorem.) Show that your composition map induces maps
Fun(D,E)≃ × Fun(C,D)≃ → Fun(C,E)≃. (See Exercise III.3.) In par-
ticular, show that the collection of ∞-category forms a Kan-complex
enriched category.

By applying the homotopy coherent nerve to the Kan-complex enriched
category of ∞-categories, we obtain an ∞-category we denote by

Cat∞,

and which we call the ∞-category of ∞-categories.
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Lecture IV

Fibrations

We began this lecture with a tangential analogy. In Japan, it is common for
a student of kyudo (archery) to not touch an arrow for years. Instead, they
train their body in the proper form of readying a bow. Then, all one needs
is to be handed an arrow to start developing one’s aim and piercing targets.

The classical theory of categories is the bow. Indeed, mathematicians
have trained for years developing our category-theoretic muscles. The com-
binatorial model of infinity-categories is the arrow, the thing that actually
allows us to pierce our prey. I have heard many complaints that the refrain
“infinity-categories allow you to use categorical arguments as though they
work just fine in homotopical settings” (a truism that sounds too good to be
true) is frustrating for its appeal and its lack of detail; perhaps it becomes
slightly less frustrating if framed with the current analogy.

I emphasized that in these lectures, I focus on the arrow, not the bow.
This is because there are plenty of examples and references on the use of the
bow. (For example, Mac Lane’s classic [11].)

I then delved into the actual content of the lecture: the theory of fibra-
tions, which I unfortunately rushed through for lack of time. The two large
take-aways are as follows.

(I) Fibrations over B encode certain functors from B (covariant or con-
travariant; to either the infinity-category of spaces or the infinity-category
of infinity-categories; depending on the type of fibration). Fibrations are
amazing because often, constructing a functor is far harder than construct-
ing a fibration – this is familiar to algebraic geometers who define stacks as
categories fibered in groupoids. The motivating example was the category of
principle G-bundles (as a right fibration over the category of spaces).
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I remarked that one is tempted to define the assignment of a space X to
the groupoid BunG(X) as a contravariant functor, but that in fact compo-
sition is not respected on the nose unless one makes some arbitrary choices.
This example shows both the utility of fibrations 1-categorically, and the ne-
cessity of higher-categorical notions to encode something as classical as “the
way in which composition is respected by pullback.”

(II) Fibrations are defined as maps having lifting properties with respect
to a simple class of morphisms; but in the course of life one must often ask if
fibrations have lifting properties with respect to larger classes of morphisms.
I rushed through the idea of the small object argument, which allows us to
prove powerful theorems about fibrations by identifying which morphisms we
can lift. Examples were mostly left to the exercises.

Amazingly, much of the theory of infinity-categories can be established by
utilizing concrete combinatorics (which we practiced in preceding exercises)
and by small-object-argument-esque techniques (which we see in this lecture’s
exercises).

For further reading regarding the small object argument, I recommend A.1.2
of Higher Topos Theory and Section 1.4.4 of Kerodon. (Sections 1.4.5 and 1.4.6
of Kerodon also give applications of the kinds of arguments one uses to study
lifting properties in simplicial sets.) Section 4.2 of Kerodon also gives a nice
introduction to left and right fibrations.
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Exercises: Joins and fibrations

IV.1 Join preserves colimits in each variable

Fix a simplicial set A.

(a) Suppose one has a diagram {Bd}d∈D of simplicial sets – i.e., a functor
from some category D to the category of simplicial sets. Show that

colimd∈D(A ⋆ Bd)→ A ⋆ (colimd∈D Bd)

is an isomorphism of simplicial sets.

If you are not used to the language of colimits, here are two examples you
can try out. I will make explicit one way you can spell out the desired
isomorphism.

(i) Pushouts: Suppose B = B1

⋃
B0

B2 as a simplicial set. Concretely,
I mean that there exists a commutative diagram of simplicial sets

B0
//

��

B1

��
B2

// B

and that for every k ≥ 0, the map between the sets of k-simplices

(B1)k
⋃

(B0)k

(B2)k → Bk

is a bijection. (Here, the union is simply the quotient set of (B1)k
∐
(B2)k

obtained by identifying the common elements coming from (B0)k.)
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Then show that there is an induced map

(A ⋆ B1)
⋃
A⋆B0

(A ⋆ B2)→ A ⋆ B

and that this map is an isomorphism of simplicial sets. (Equiv-
alently, show that for every k, the function between the sets of
k-simplices is a bijection.)

(ii) Filtered colimits: Suppose you have a sequence of simplicial sets
B0 → B1 → . . . (you can take the indexing set to be a bigger
ordinal than N if you like) and set B =

⋃
i Bi. This is the simplicial

set whose k-simplices are obtained by quotienting the set
∐

k(Bi)k
by identifying elements that arise from common elements in the
sequence of maps between simplicial sets Bi → Bj.

Show that there is an induced map
⋃

i(A ⋆ Bi) → A ⋆ (
⋃

i Bi) and
that this map is an isomorphism.

IV.2 Some closure properties of fibrations

Remark IV.2.0.1. Note that the solutions to this exercise should have a
distinct flavor from the solutions to previous exercises – they should involve
no combinatorial arguments particular to simplicial sets. (The particulars of
simplicial sets only arises if you must convince yourself that pullbacks exist,
and that pullbacks of simplicial sets behave as dimension-wise pullbacks of
sets.) The solutions to these exercises, instead, should give you practice with
manipulating commutative diagrams.

(a) Show that the composition of two inner fibrations is an inner fibration.

(b) Let p : E → S be an inner fibration and f : S ′ → S a map of simplicial
sets. Show that the pullback of p along f is also an inner fibration.

(c) Convince yourself that the previous two exericses are true if you replace
inner fribations with

(i) Left fibrations

(ii) Right fibrations

(iii) Kan fibrations

(iv) Trivial fibrations.
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IV.3 The over-category of an object

Let C be an ∞-category and fix an object x.

(a) Verify that the forgetful functor C/x → C is a right fibration.

(b) Prove that C/x is an ∞-category. (Hint: Exercise IV.2.)

IV.4 Closure of left lifts

Remark IV.4.0.1. You may take every map in this problem to be a map
of simplicial sets, but this exercise can be completed in any category.

However, you will want to at least know about the universal properties
of colimits. This is a classical topic in the theory of (ordinary, non-infinity)
categories, and will be useful even when you restrict this exercise to the
setting of simplicial sets (rather than an arbitrary category).

The reason you’ll want to know about the universal properties is that
these universal properties allow you to conclude the existence of certain ar-
rows that render certain diagrams commutative. This flavor of argument will
be useful in these exercises.

Let F be a class of morphisms, and fix an element p : E → S in F . We
say that a morphism j : A0 → A has the left lifting property with respect to
p if

A0
∀F //

j
��

E

p

��
A

∀G //

∃
>>

S.

We let L(F ) denote the collection of morphisms j for which j has the left
lifting property with respect to all elements of F .

(a) Show that L(F ) is closed under pushouts. That is, given a pushout
square

A0
j //

��

A

��
A′

0

j′ // A′

if j is in L(F ), then so is j′.
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(b) Show that if A0 → A1 → A2 → . . . is a sequence of maps for which every
Ai → Ai+1 is in L(F ), and setting A := colim(A0 → A1 → . . .), show
that the map A0 → A is in L(F ). (More generally, if you know what
transfinite composition is, show that L(F ) is closed under transfinite
compositions.)

(c) Show that L(F ) is closed under retracts. That is, given a commutative
diagram

A′
0

��

// A0
//

��

A′
0

��
A′ // A // A′

where the horizontal composition equals the identity maps, if j is in L(F )
then j′ is in L(F ).

IV.5 Weakly saturated collections

Definition IV.5.0.1. We say that a collection of morphisms S is weakly
saturated if S is closed under pushouts, transfinite compositions, and retracts.

(a) Show that if S and T are weakly saturated, then so is S∩T . In particular,
given a collection A of morphisms, show there exists a smallest weakly
saturated collection of morphisms containing A. We call this the weakly
saturated class of morphisms generated by A.

(b) Consider the collection of all boundary inclusions ∂∆n ⊂ ∆n of simplices.
Show that the weakly saturated class of morphisms generated by these
boundary inclusions is the collection of all injections of simplicial sets.

(c) Show that any inclusion of simplicial sets satisfies the right lifting prop-
erty for any trivial fibration.

(d) Let F be the class of inner fibrations. Show that the smallest weakly
saturated collection containing all inner horn inclusions is a subset of
L(F ).

Remark IV.5.0.2. Quillen’s small object argument shows that the opposite
inclusion is true – L(F ) is the smallest weakly saturated set containing all
inner horn inclusions.
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Remark IV.5.0.3. You may wonder about the word “weak.” Saturation
(as opposed to weak saturation) refers to the closure of S under arbitrary
coproducts. Standard axioms of set theory render any arbitrary coproduct of
morphisms into a transfinite composition (by well-ordering the set indexing
the coproduct). Regarding this parenthetical point: It is a consequence of
the ZFC axioms that such a well-ordering exists, and it is consistent with
ZFC that a definable well-ordering exists – but ZFC is not enough to prove
the existence of a definable well-ordering.

IV.6 Slice categories more generally

This exercise is a (very important) generalization of Exercise IV.3.
Let K be a simplicial set and C an∞-category. Fix a functor f : K → C.

We define the simplicial set
C/f

to have k-simplices given by maps ∆k ⋆K → C whose restriction to K agrees
with f .

(a) Show that for any m,n ≥ 0, and 0 < i ≤ m, the inclusion

Λm
i ⋆∆n

⋃
Λm
i ⋆∂∆n

∆m ⋆ ∂∆n ↪→ ∆m ⋆∆n

is an inner anodyne map. (This is not a formal fact, and the proof comes
down to careful combinatorics. Hint: The inclusion in question can be
identified with a much more familiar inclusion.)

(b) Show that for any m ≥ 0, 0 < i ≤ m, and any inclusion B0 ↪→ B of
simplicial sets, the inclusion

Λm
i ⋆ B

⋃
Λm
i ⋆B0

∆m ⋆ B0 ↪→ ∆m ⋆ B

is an inner anodyne map. (Hint: Show that the collection of such in-
clusions B0 ↪→ B is weakly saturated. This requires you to be a little
careful with computing pushouts of pushouts.)

(c) Show that for any f : K → C, the forgetful functor C/f → C – sending
a k-simplex ∆k ⋆ K → C to its restriction ∆k → C – is a right Kan
fibration.
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(d) Show that C/f is an ∞-category.

IV.7 Compositions are unique up to homo-

topy (in fact, up to contractible choice

of homotopy)

To be a “category” one should require some notion of composition. We’ve
seen than the ability to fill the horn Λ2

1 gives one intuition that∞-categories
have some composition – given two arrows, we can exhibit a third.

The following (due to Joyal) establishes that this composition is well-
defined up to contractible choice.

Theorem IV.7.0.1. Let S be an simplicial set. Then S is an ∞-category if
and only if the map

Fun(∆2, S)→ Fun(Λ2, S)

is a trivial fibration.

(a) (Difficult.) Show that the collection of inner anodyne maps is the weakly
saturated collection of morphisms generated by the inclusions

(∆m × Λ2
1)

∐
∂∆m×Λ2

1

(∆m ×∆2) ↪→ ∆m ×∆2.

(b) Prove Theorem IV.7.0.1.
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Lecture V

Thickened manifolds and spaces
over BO

We began week two with a result that seems well-known to experts: The ho-
motopy theory of thickened, compact manifolds (up to isotopy equivalence)
is equivalent to the homotopy theory of finite CW complexes over BO. While
there are proofs involving h-principles (e.g., the Smale-Hirsch theorem) we ex-
plained a proof that instead shows that thickened manifolds admit pushouts
in the infinity-categorical sense. (They do not admit pushouts in any rea-
sonable, classical sense.) This was inspired by ideas of Oleg Lazarev.

This was also an excuse to introduce, as a baby step, the idea of colimits
in an infinity-category (and their utility). Indeed, the proof sketched here
uses no Smale-Hirsch theorem – though it does use smooth approximation of
continuous functions.

We remark that there is a highly subtle point that we did not touch upon
(and did not need to touch upon) in this work. The theory of isotopy equiv-
alences of manifolds with corners and boundaries is very different from the
theory of diffeomorphisms of manifolds with corners and boundaries. This
is especially true for compact manifolds. Indeed, if one is concerned about
diffeomorphisms of compact manifolds, the analogue of Mazur’s theorem be-
comes much more interesting, opening the door to Waldhausen’s famous
results relating spaces of manifolds to algebraic K-theory.

We also defined in this lecture the notion of equivalence of ∞-categories.
This was done a bit quickly. We intuited that for any ∞-category C, and for
any object c ∈ C, the right fibration C/c → C is some model for the Yoneda
embedding of c. Since a functor F : C→ D induces a map of right fibrations
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C/c → D/F (d) over F , one has induced maps of fibers over c′ and F (c′). If,
regardless of c and c′, this induced map is an equivalence of Kan complexes1

we say that F is fully faithful.) Note this definition could also have been
given using the left fibrations Cc/ or using other models of mapping spaces;
any two reasonable definition of full faithfulness are equivalent.

Chapter 7 of Kerodon serves as a readable reference for colimits in infinity-
categories.

The result presented here is contained in [17]. For the relation to Wald-
hausen’s work, we recommend his outline [22].

1These Kan complexes morally represent the mapping spaces homC(c
′, c) and

homD(F (c′), F (c)).
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Exercises: Colimits

V.1 Definition of colimit

Fix a simplicial set K and a functor f : K → C. We defined the right
fibration C/f in Exercise IV.6.

Dually, we can define the undercategory (really, under-∞-category)

Cf/

by setting its k-simplices to consist of maps K ⋆ ∆k → C that restrict to f
alongK. Note that an object of this∞-category is some object of C receiving
a map “from f .”

(If you like, you can take K = Λ2
0 in this example. To visualize things, it

may help to note that K ⋆∆0 ∼= ∆1 ⋆∆1.)

Definition V.1.0.1 (Colimit). Fix an object x ∈ Cf/. We say that x is a
colimit of f if the fibration

(Cf/)x/ → Cf/

is a trivial fibration.
When K = Λ2

0, a colimit for f is called a pushout of f .

(a) By using the lifting property for the inclusion ∅ = ∂∆0 → ∆0, show that
for any object y ∈ Cf/, you can find a map from y to x in Cf/.

(b) By using the lifting property for the inclusion ∂∆1 ∼= ∆0
∐

∆0 → ∆1,
show that any two maps as in the previous exercise are homotopic.

(c) Show that any two homotopies as in the previous exercise are in fact re-
lated by a higher homotopy (e.g., by exhibiting an appropriate 2-simplex
in Cf/).
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(d) Suppose that both x and x′ are colimits of f . Show that there is an
isomorphism x ∼= x′ in Cf/.

V.2 An example: Pushout in sets

This is a warm-up using sets (either for people not used to pushouts, or for
people who want to translate classically familiar notions to ∞-categorical
language).

Let C = Sets be the (nerve of the) category of sets, and fix a diagram
f : Λ2

0 → C. Concretely, this is the data of three sets W,X, Y and functions

X ← W → Y.

(a) Consider the set X
⋃

W Y , defined as the quotient set

X
⋃
W

Y := (X
∐

Y )/ ∼

where we say x ∼ y if there exists an element w whose images in X and
Y are equal to x and y, respectively. Show that the functions

X → X
⋃
W

Y, x 7→ [x], Y → X
⋃
W

Y, y 7→ [y]

defines an object of Cf/.

(b) Show that X
⋃

W Y (considered as an object of Cf/ as in the previous
exercise) is a colimit for f .

(c) For any set Z, exhibit a bijection

hom(X
⋃
W

Y, Z)→ hom(X,Z)×hom(W,Z) hom(Y, Z)

where hom = homSets denotes the set of functions.

V.3 An example: Mapping cones in cochain

complexes

This is a more ∞-categorical example.
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Fix a base ring R and fix a chain map f : A → B between two R-linear
cochain complexes. We define the mapping cone of f to be the cochain
complex

Cone(f) := B ⊕ A[1], d(b, a) := (db+ (−1)|a|f(a), da).

(a) Verify that Cone(f) is a cochain complex.

(b) Consider the diagram Λ2
0 → ChainR to the dg-nerve of the dg-category

of R-linear chain complexes given by

0← A
f−→ B.

Exhibit a functor Λ2
0 ⋆∆

0 → ChainR sending the vertex ∆0 to Cone(f).
By abuse of notation, we will also notate this functor by Cone(f). It is
an object of (ChainR)f/.

(c) Show that the functor ((ChainR)f/)Cone(f)/ → (ChainR)f/ has the right
lifting property with respect to all inclusions ∅ = ∂∆0 → ∆0.

(d) Show that the functor ((ChainR)f/)Cone(f)/ → (ChainR)f/ has the right
lifting property with respect to all inclusions ∂∆1 → ∆1.

(e) Show that the functor ((ChainR)f/)Cone(f)/ → (ChainR)f/ has the right
lifting property with respect to all inclusions ∂∆2 → ∆2.

(f) (*) Show that Cone(f) is a pushout.
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Lecture VI

Stabilized Weinstein sectors

The second lecture of week two introduced the idea of localizations. The
main takeaway is that even classical categories admit infinity-categorical lo-
calizations that encode rich information. Here is the flagship example : A
localization of the (ordinary) category of reasonable topological spaces re-
covers the infinity-category of topological spaces.

We then tried to explain that a similar result holds for a class of nicely-
behaved symplectic manifolds: Weinstein sectors. (This is joint work with
Oleg Lazarev and Zach Sylvan.) The references are [6, 7]. For those interested
in wrapped Fukaya categories, we find that the most user-friendly definition
is contained in [4]. Finally, Section 6.3 of Kerodon contains material on
localizations of infinity-categories.
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Remarkable Cat :
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(pf Techinque )
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Exercises on localizations

Recall the ∞-category of ∞-categories

Cat∞

from Exercise III.4.

VI.1 Definition of localization

Let C be an ∞-category and choose a collection of morphisms S ⊂ C1. Let
E be an ∞-category equipped with a functor

L : C→ E.

Definition VI.1.0.1. We say that L exhibits E as a localization of C along
S, and that L is a localization of C along S if for all ∞-categories D, the
pullback functor

L∗ : Fun(E,D)→ Fun(C,D)

is fully faithful, and if the essential image of L∗ consists of those functors
f : C→ D sending all morphisms in S to isomorphisms in D.

(a) Suppose L : C → E is a localization of C along S. Show that for any
functor f : C → D for which f(S) ⊂ (D≃)1, there exists a diagram
∆2 → Cat∞ in the ∞-category of ∞-categories

C
f //

L
��

D

E

f̃
?? .
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(b) Given two diagrams as above (and in particular, potentially two edges f̃
and f̃ ′ : E → D) show that the dashed edges are homotopic. (That is,
show there exists a 2-simplex in Cat∞ with edges given by f̃ , f̃ ′, and a
degenerate edge.)

VI.2 An example

(a) (Way too hard.) Suppose C and E are (nerves of) ordinary categories, and
suppose L : C → E admits a fully faithful right adjoint (in the classical
sense). Convince yourself that L is a localization (of ∞-categories).

(b) Fix n ≥ 0. Let P′([n]) be the partially ordered set of non-empty subsets
of [n], ordered by inclusion. Consider the map of posets

P′([n])→ [n], I 7→ max I.

Show that (the nerve of) this map is a localization.
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Lecture VII

Factorization homology

The third lecture of week two introduced the audience to the theory of En-
algebras and the invariants of n-dimensional manifolds (factorization homol-
ogy) one can make out of these algebras. The idea that a hierarchy of com-
mutativity, from E1 to E∞, exists in homotopy theory was by now a recurring
theme in our lectures.

We did not delve into the full complexity of the myriad infinity-categorical
tools that go into the foundations of factorization homology, but we gave a
rough outline of some of the first theorems of the field.

We ended by saying that one we can encode algebras and modules using
factorization homology for stratified spaces, it is natural to wonder how to
capture the theory of higher categories using stratified spaces. This is one
direction that the works of Ayala-Francis, Ayala-Francis Rozenblyum, and
Ayala-Mazel-Gee-Rozenblyum pursue. A famous conjecture relating cate-
gorical notions with manifold-theoretic notions is the cobordism hypothesis,
and indeed a large initial motivation for factorization homology was to give
an alternative proof strategy for this conjecture.

We present no exercises. For further reading, we refer the reader to the
book [19], a freely available version of which is on the arXiv [18]. For an even
more global perspective, we refer to Ayala-Francis’s primer [1].
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Inroduction to Factorization Howology
aka.topologicalchial homology

( Lurie)

T w/ D. Ayala , J. Francis

(developed thereafter by )Ayala , Frands , Rozemblyum , Mazel -Gee . …

An example :

Consider the category Disk?
ob (Aisk9 ) = { Q

,
R .RIR IRTR

* IE
… }

.{ hom ( x ,f ) = { orT. pres . C openembs
X→I }

wI topology .

～彡 N(isk)is an interesTing ∞ -cat.

Runk .Sym .* stre .of
4

:

X;I → X*IC)
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FTX V = Chainlk .(resp.Chaaukeseat
Consider a-funtor

(resp. NEDick ?)
←これ θDeakと略 す(元脈から大体かる )

A : Disk" → V

equipped w/ data of isom .s ca sy
nwrwidal[ ]A ( X* 2 ) ≤ A (X) A ( Y). frear

Further assume [resp . As a conceq" ]hom(x , 2)→ hom (A(×).A(c)》

j ～社 ⇒ A(j) = Alj) respects kepces( &higheones)

'
A(H)

guj, ⇒AH(ほ )～ A(g)

Prop . The data of A is equvaletto

the data of anassk-alg .

(As)

ItVore . precisely , aan equov of catsへ
∞)

{ sn * freors A :Disk → V }
→ { Ass .tk-alg .}( As )

( sketch of proof )Fix A ,adptACt) = :θ
.

A : sym① n@ ACA) ≡ 1K .

ALR* R) = A^ - 日 .

We have the folloing :
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U
A "

⑩ ψ → 1R t→ Ik →畫 .

W ニ: m

字 j
⑩ RIR由 ^ →

)

A
.

ー

→fS → D
τ 2

A(H
)

l 2 ( j学⇒mj～mj')
uxord

φ* I → I *R IKA → AOR

LzQcot →ゝ
A

IP mg
IR

id / A
ー

up to hepy

' U is a wiit for い
. htpyせ 2

(m τs unrtal )
up to ihtpy j

id*j
②RIRI→ I

*
IE ①3ョ → AD2

A
ー

i:d ↓ □so ↓ 示 → ↓ 田 ↓

AA→
I
*

R⇒ IR
ー l

ー

up to htpy

: w is assoccatwe .

Question Gven A
,

is there a natural extensiontoMldor
?

neednotcpt
withorO
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Def.
lex wbe a nice sym . s-cat, and

egV =Cheolkw ( 長 )

A : Diskr → V a syr . monoidal functor .

The factorzation homology with coeff. A is

the LEET KAN EXTENSION of A along L :

Disko
A
v→

↓ ーー
ア

Mfld? SA .

～WesaySxA . =SA ( X)is

the fact
-
homol

. over X .

Thm . Frx A an As-alg .

( ass. alg .

)

⇒ ヨ
a quas-rsom . Hodischild

r

SsA ≈ A *AAr charnape of A .

ー

Runk .hom( s ,
s ^ ) =DiffCs ≈ s.

～雎 Aifle( s 9 )aSs
^ )

d
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Runk
.
If we consider Diski ,

sym . θ . Diske → r

equiv.
Ihir an

.

As - alg . ヨ
wl an rvolution O : ≡→.

In higher dim . s :

Consider functors

A : Diskn → V .

4 obp : ψ , R" .Eu4E.…

hon : O
'

open embis

Green A ,
.we defivefact -homod wl wel . A

as the loffkamext .Fisknt r

」
Mtldn

θ What data goes into A ?

@ A (R") =. ≡ .{ 8 A ( ψ → 1E
^ ) = IK*A

; also …

IR
∞*
R
"

A ( 田 田 →□) 数= * .→王
"

1 11 1 1 l
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f\taan coi lIIwor2try
A ( 田田 →□ 輪 ) =AA →'

^ i

Informally , a syu. * functor Diskn → r

is the data of an alg .

.

w/ mult. thatcommuteIn-aly[
up to htpically ambiguity of Sn

-l
.L

wl compatible O(u)- action .

fFramedEu-alg . * 甘τ= Aes .

Runk .DefiveDisknt to be :

obj : φ , R" .
R"

*E
"

…

…

equipped w/thestd .fringsof TR≡Y .

hom (X . 4 ) = { c'openrbx→cw
/datahtpy.bewnfamings }.

eg. hompiskt( R ,̂(I
^ ) = * .

( cf. homaiskn (I",R^ ) ≈ou))
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Runk .We can defovefact -homl .forMfld
S

Mfldntr →

Jop/(*→Bou)
dd ↓ X→Bo(

u →C ).

Hop(BonMtldn → I
山匕

X→ (X→BOCG》*

Faet. hom . is , in theory .

"

computable "

EX X = X0
VXWY凹

臼護∴
'
心

二Xo
Xr

Obs .

(日7 ) ぐSWtA Tsan As -alg.

C@ Aiskr→ v

↓~o ftit is amodules MtldwWX
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ageeifi =
loffif i= . 議

:

1 )
/ /////)
: ノ 幽べ“,Xo ← ×0

*
WXIR

品
S
×0
A← S×0 A ⑤ SW×IA

The . [AF .
AFT ] ( θ - excrsion for fat

.
hom )

Ban equiv .

SxA ≈ { yot tyiAnor .
Thm . [ AF , AFTJ

wsym. *
-functorMfldnt→ rEvery

Satistying ④-exorsion

arises as fact ,homl
.

( sketchof proof ①-excisionf )

Pass to fact. hom
.

for stratifredintd
6

。
1]
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ノノ ノ
ノノ X

～ っ

,

"

,

"
し し ∴

Yノ ノノ ィィ ィY

ィ ノ璧
"

Constuctible bidle
"

.

丶 p is a

⑩⑩

⑦Lemma Hom . pushes forwand along such p .

e Grven Disk D → [orJP

Some

P
-^ ( Iinege(D) )= ild .( have

ー )↓

SameA =: Sap*A .ild

Lenma② @～
, ー⑥

Data of Fiske → rdeterrines
Mo , M, over A ,

Mflde8止
⇒ Saa (Mo , M . A)=MoA 衆
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Lecture VIII

Spectra and invariants of
Legendrians

The fourth and final lecture of week two introduced the notion of spectra,
and touched on in-progress joint work with Lisa Traynor on defining stable
homotopy invariants of Legendrians in jet bundles.

We note that the meaning of the term “spectral invariant” is now multi-
valued in symplectic geometry. One meaning concerns quantitative invari-
ants (reminiscent of the eigenvalue spectrum of a linear operator) detectable
through, say, persistence techniques. The meaning here instead concerns the
homotopy-theoretic use of the the term spectrum, as a stable homotopy type.

We present no exercises for this lecture. For further reading and for
exercises on spectra, we refer the reader to the Vancouver lectures [16].

For the homological precursors to these spectral invariants, see the works [21,
12, 3]. The key geometric computations regarding the fibration property are
contained in [13, 20].
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Option A . Into
.

to spectra
士

Stable htpy inv .

s

for legendrram
in jet bundles

tw( inprogress) L
. Traynor

Option B . Morse thy on a poiut ,
a stack of broken tines ,

and ass
. algebvas .

社 w/ J. Lurie on thearXiv

mivcinal exposition

regonding cs-cats

and their use
.
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Spectra

Q
. If you were a topologist ,

ー

how would
you define

a topological / htpy-theoritic wotion
of " ibelcan group

" 金

E .g .
⑦

X : top . sp , x 0 εX

πi (X,ω ) a
{
( [ o,^] , 0)∞ (X ,0 ) }ノ

htpy rel o .

Not aberam :gereral"

π2 ( X ,ω ) dt
. { ( Cons',0 )← ( X , ω) } /hupyrelo

.

: adelra,tut

Note}□ □"
/

To remember tors :

Ef+ πz(X,7 ω )～ xRIX = {([.^]2 ,0) ←(X0 )}

(More genevally , 2
"

X = { ( o.^j^ ,o) LX. s } )remenkers more than πh .
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4
The obstuction to R

"

X being
"

comwrtative
"

was encoded in grel .

sostass→ contbatibe !(tobel:an )

. Ifwecan gue a spaceX
the stucare of

I
^

Xu ( forcomeptdspaceXn)
In

.
in a compatible way ,

X to be called
"

abelcan "deserves

Def . Aspetmm is data of ,the

。 ptid spaces to , XeiX2 . …{ kno ,
a htpyequn. Xn → RXut1

ntto→ IXys
lookslike a gomp !

2tr
GvenXr AX2 , considerIX, →RX 2

～TherwehaveXo→2 Xe→EX .'

/
n .{ }and tn , tosf'

mmm

X is gTver a
wmltiplccatiom
ac comn . as we lile !

1*
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Def. A map of spectra j : X→I :s

data of Comaps {Iu :Xn→Iu}nthe

w/ htpys Hn :

u
Xn → Iu

↓AHhs
RXu fXut.

Rjut1

E
.g . Fix an abelcan group A .

(Thn. ; )In , 0

. AK(An) : top .sp
4

s
.
t. πik(A , n) = { A t

= n

0 iキm(
Take Xu := KAin)

.

E:lenkeng-Maclanesp

n Xu → RXuti
1 " い

KAin ) 2KAnti )

…
…ゝ

si
dO K(A , n)
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This spectun rs called HA
Elenkerg -Macdane spectum .

Eg.Defive 2d
1

R
2
S
2

い
い

Xo := coam ( S→RƩ S →R2Ʃ2S … )

… Urnguー

n30 ,

nsk
In
-ksu

.

and set Xk := U

～雎 2EXk = 能 2k2ks
"

= し
nak
Irsn

= Xo .

This spectuuniscalled$ .

the sphere specten .

Rnk .Can defonethes-cat of spectra
in two ways

:

二 )⑦ tim( →Jop Jop* ①* Jopa .
儿

: ↓ 旨 → 芹 → Xo Jopd
Spectra := Yoppt./
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→Spectrgi
心 grves

2X→Xo !
X2 Xo.ク X1ィ

～

Xeィ /
a悲2X2→ )/x
r

Jop*Jopass Jop*
'

f
.

2Xu→Xo

Spectha ≈colim ( " ←Jop*
Ʃ

-Yop *
)

②
becanse Ʃ is a leffadj - tofandm

∞-cat. s wl{ ∞-catswlmaps=right
}

{adgs wape = lefe adjis
} .

This colimit has a model ( Involving 2 steps )

and stept is explicit :

{ ptdspacesto, th . Az.
。 An,0 , htpy equiv . Ane. ←ƩAn .

愛、nB} = [-BT}
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EMspectmAb S, pectra
smash

⑤ θ=→ ^
ー

丑

Recall : We have

Freex

Sets* Ab*
rorget*

A→ EA = E
世A

ノ

LA, a0 )BA/E}

G cet ∠Tas Gas ab .gp

14(G, e) G

Free
S ⑱

Freex
M 1→ X

and homAb (EA , G ) homsees ( A , G)
net

.

たて

Tbm .

aa
"

free-forget
"

adJunction

Jop* < Spectra
A 1 〉

say) Ʃ∞A

Xo ょ X

A ↓ > ④X
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* th's prurfis woT elevecary .

①
Jop* 臼 Spettha
dπ0 tio
→

Setsy . Ab
famous
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Legendvcams:

..:[
”

? 3"

^
{

意
Bo

UのC

8

Def.FaxB cotd, and
-f : BXET→ IR

.

Conside the locus
ー
ー

(x , dBfxin ),n . , fcain) )
forthoce(xin)wheeB×Rv dorf = 0 .

remerker

f ⑦vaues of Λe遊
*BX 1E Graph(dl)τ :噓Ypt

.

↓ ゝ Zeetor
*B

N
T T
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Pop . At is a legendram ICB
, 1R )=

c( )

(immersed ) In T*BXIR
.

☆ fis called generatinga faurily
for Af .

Custren ( LTraynor )

GIven a generatig-famrlyfCor ^

consider the Co fon assume

Nis ewhedded
wum

BXRNXRX →1
RO

.M ' f ) → fr)-fcrit):

rop .

Cri + ( ) ≡Ae Reebchordse
tocesf {
}

*±

っ 4

whereOf=BXRXE す
wheeOto

.

☆ AC4) :=
{ Of ≤ brg #} "

{ oe ≤ sndl # }↳01

ε Jop* .
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= brg #

D

Q

Cri+(of )

Ismall#{ 0n* 0 }
Lemma ( Chekanor )

stab: rzathon by
←xIt…+ xcgennf 〉 egenNek

I
.

2

or
dependeon o

At E Ley
L ヨK 》 f

Sko : legicot . S.t. 0 lifts

N to genitk .

Thur . Cjen : = U egert
(Cor. ) ↓

N≥0

Leg is a fibrathon .
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Lemma e →- fexr
カ A

geum → gervel → gerN+2 → .

2 n …↓ htpy ↓ htpy ↓

Jop* → Jop* つ Jop* → …

^

Aβ)→ƩACe)

Cor
. We have a funcor

gen→ Spectrea .

(Λe .4 )
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