Reading 25

Closures, boundaries, and density

25.1 Closure

Definition 25.1.1. Fix a topological space X and let $B \subset X$ be a subset. ${ }^{1}$ Let

$$
\mathcal{K}_{B}
$$

be the collection of all closed subsets of X containing $B .{ }^{2}$ Then the closure of B is defined to be

$$
\bar{B}:=\bigcap_{K \in \mathcal{X}_{B}} K .
$$

In words, the closure of B is the set obtained by intersecting every closed subset containing B.

Remark 25.1.2. Note that B is always a subset of \bar{B}.
Remark 25.1.3. Note that \bar{B} is a closed subset of X. This is because the intersection of closed subsets is always closed.

Example 25.1.4. Let U be an open subset containing x. Then the closure \bar{U} is a neighborhood of x.

[^0]Remark 25.1.5. If $B \subset X$ is closed, then $\bar{B}=B$. To see this, note that B is an element of \mathcal{K} because B is closed. Hence

$$
\bigcap_{K \in \mathscr{K}} K=B \cap\left(\bigcap_{K \in \mathcal{X}, K \neq B} K\right) .
$$

But this righthand side is a subset of B because it is obtained by intersecting B with some other set. In particular,

$$
\bar{B} \subset B
$$

Because $B \subset \bar{B}$ (for any kind of B), we conclude that $B=\bar{B}$.
The converse is also true: If $\bar{B}=B$, then B is closed.
Example 25.1.6. If $B=\emptyset$, then $\bar{B}=\emptyset$. If $B=X$, then $\bar{B}=X$.

25.2 Density

Definition 25.2.1. Let X be a topological space and fix a subset $B \subset X$. We say that B is dense in X if $\bar{B}=X$.

25.3 Exercises about closures

Exercise 25.3.1. Let $X=\mathbb{R}^{n}$ (with the standard topology). Let $B=$ $\operatorname{Ball}(0, r)$ be the open ball of radius r. Show that the closure of B is the closed ball of radius r; that is,

$$
\bar{B}=\left\{x \in \mathbb{R}^{n} \text { such that } d(x, 0) \leq r .\right\}
$$

Proof. You showed in your homework that if $K \subset X$ is closed and if x_{1}, \ldots is a sequence in K converging to some $x \in X$, then x is in fact an element of K.

Choose a point x of distance r from the origin. And choose also an increasing sequence of positive real numbers t_{1}, t_{2}, \ldots converging to $1 .{ }^{3}$ Then the sequence

$$
x_{i}=t_{i} x
$$

[^1]

Figure 25.1: An open ball on the right; its closure (a closed ball) on the left.
is a sequence in B converging to x. If $K \supset B$, then the x_{i} define a sequence in K; moreover, if K is closed, the limit x is in K. Thus $x \in K$ for any closed subset containing B. In particular, x is in the intersection of all such K. Thus $x \in \bar{B}$. This shows that the closed ball of radius r is contained in \bar{B}.

On the other hand, consider the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $d(0,-)$; that is, the "distance to the origin" function. We see that $f^{-1}([0, r])$ is equal to the closed ball of radius r - in particular, this closed ball is a closed subset of \mathbb{R}^{n}, and it obviously contains $\operatorname{Ball}(0, r)$. This shows that \bar{B} is a subset of the closed ball of radius r (because \bar{B} can be expressed as the intersection of this closed ball with other sets). We are finished.

Exercise 25.3.2. Suppose $f: X \rightarrow Y$ is a continuous function, and let $B \subset X$ be a subset. Show that

$$
f(\bar{B}) \subset \overline{f(B)}
$$

In English: The image of the closure of B is contained in the closure of the image of B.

Proof. Let \mathcal{C} be the collection of closed subsets of Y containing $f(B)$. Then

$$
f^{-1}(\overline{f(B)})=f^{-1}\left(\bigcap_{C \in \mathcal{C}} C\right)
$$

by definition of closure. We further have:

$$
f^{-1}\left(\bigcap_{C \in \mathcal{C}} C\right)=\bigcap_{C \in \mathcal{C}} f^{-1}(C)
$$

Now, because f is continuous, we know that $f^{-1}(C)$ is closed for every $C \in \mathcal{C}$. Moreover, because $f(B) \subset C$, we see that $B \subset f^{-1}(C)$. We conclude that for every $C \in \mathcal{C}, f^{-1}(C) \in \mathcal{K}$. Thus

$$
\bigcap_{K \in \mathscr{K}} K \subset \bigcap_{C \in \mathbb{C}} f^{-1}(C)
$$

The lefthand side is the definition of \bar{B}. The righthand side is $f^{-1}(\overline{f(B)})$. We are finished.

Remark 25.3.3. It is not always true that $f(\bar{B})$ is equal to $\overline{f(B)}$. For example, let $B=X=\operatorname{Ball}(0, r)$, and let $f: X \rightarrow \mathbb{R}^{2}$ be the inclusion. Then $f(\bar{B})=X$, while $\overline{f(B)}$ is the closed ball of radius r.

Exercise 25.3.4. Find an example of a continuous function $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\overline{\{x \text { such that } p(x)<t\},}
$$

does not equal

$$
\{x \text { such that } p(x) \leq t\} .
$$

Example 25.3.5. Let $B \subset \mathbb{R}^{2}$ be the following subset:

$$
B=\left\{\left(x_{1}, x_{2}\right) \text { such that } x_{1}>0 \text { and } x_{2}=\sin \left(1 / x_{1}\right)\right\} \subset \mathbb{R}^{2}
$$

This is not a closed subset of \mathbb{R}^{2}. I claim

$$
\bar{B}=B \bigcup\left\{\left(x_{1}, x_{2}\right) \text { such that } x_{1}=0 \text { and } x_{2} \in[-1,1]\right\} .
$$

That is, \bar{B} is equal to the so-called topologist's sine curve.
Let us call the righthand side S for the time being. First, I claim that $S \subset \bar{B}$. Indeed, fix some point $(0, T) \in S \backslash B$. Then there is an unbounded, increasing sequence of real numbers t_{1}, t_{2}, \ldots for which $\sin \left(t_{i}\right)=T$; let $s_{i}=$ $1 / t_{i}$. Then the sequence of points

$$
x_{i}=\left(s_{i}, \sin \left(1 / s_{i}\right)\right)=\left(s_{i}, T\right)
$$

converges to $(0, T)$, while each x_{i} is an element of B. In particular, $(0, T)$ is contained in any closed subset containing B. This shows $S \subset \bar{B}$.

To complete the proof, it suffices to show that S is closed. For this, because \mathbb{R}^{2} is a metric space, it suffices to show that any convergent sequence
contained in S has a limit contained in S. So let x_{1}, x_{2}, \ldots be a sequence in S.

Suppose that the limit $x \in \mathbb{R}^{2}$ has the property that the 1 st coordinate is non-zero. There is a unique point in S with a given non-zero first coordinate t, namely $(t, \sin (1 / t))$. Moreover, because the function $t \mapsto \sin (t / 1)$ is continuous, if $t_{i}=\pi_{1}\left(x_{i}\right)$ converges to t, we know that $\left(t_{i}, \sin \left(1 / t_{i}\right)\right)$ converges to $(t, \sin (1 / t))$. So the limit is in S.

If on the other hand the first coordinate of x is equal to zero, let us examine the second coordinates $\pi_{2}\left(x_{1}\right), \ldots$ By continuity of π_{2}, the sequence $\pi_{2}\left(x_{1}\right), \pi_{2}\left(x_{2}\right), \ldots$ converges to some T; because each x_{i} has a second coordinate in $[-1,1]$, and because $[-1,1] \subset R R$ is closed, we conclude that the limit T is also contained in $[-1,1]$. Hence the limit of the sequence x_{1}, \ldots, is the point $(0, T)$, and $(0, T) \in S$.

Because any sequence in S with a limit in \mathbb{R}^{2} has limit in S, S is closed.

25.4 Density exercises

Exercise 25.4.1. For each of the following examples of subsets of \mathbb{R}^{2}, identify the closure, the interior, and the boundary. Which of these is dense?

1. $B=\left\{\left(x_{1}, x_{2}\right)\right.$ such that $\left.x_{1} \neq 0\right\}$.
2. $B=\bigcup_{(a, b) \in \mathbb{Z} \times \mathbb{Z}}(a-1, a+1) \times(b-1, b+1)$.
3. $B=\left\{\left(x_{1}, x_{2}\right)\right.$ such that at least one of the coordinates is rational $\}$.

Exercise 25.4.2. Prove each of the following propositions.
Proposition 25.4.3. Fix $B \subset X$. The following are equivalent:

1. B is dense in X.
2. For every non-empty open $U \subset X, U \cap B \neq \emptyset$.
3. For every $x \in X$, and every neighborhood A of x in X, we have that $A \cap B \neq \emptyset$.
4. For every $x \in X$, and every open neighborhood A of x in X, we have that $A \cap B \neq \emptyset$.

Proposition 25.4.4. $\mathbb{Q} \subset \mathbb{R}$ is dense.
Proposition 25.4.5. $\mathbb{R} \backslash \mathbb{Q}$ is dense in \mathbb{R}.

Solutions to Lecture 25 Propositions

Proof of Proposition 25.4.3. $1 \Longrightarrow$ 2. Proof by contrapositive. Suppose that there is some non-empty open $U \subset X$ such that $U \cap B=\emptyset$. Then U^{C} is closed while $U^{C} \supset B$, so the closure of B is contained in U^{C} by definition of closure. In particular, \bar{B} does not contain U, so could not equal all of X.
$2 \Longrightarrow 4$. This is obvious, as if A is an open neighborhood of x, then A is a non-empty open subset of X.
$4 \Longrightarrow 3$. Given A a neighborhood of x, let $U \subset A$ be the open subset containing x (guaranteed by the definition of neighborhood). Then $U \cap B \neq \emptyset$ by 4 , so $A \cap B \supset U \cap B \neq \emptyset$.
$3 \Longrightarrow 1$. Clearly $\bar{B} \subset X$ always, so we must show that $X \subset \bar{B}$. Let $K \subset X$ be a closed subset containing B. Then K^{C} is open. If K^{C} is nonempty, choose $x \in K^{C}$, and note that K^{C} is a neighborhood of x. Thus by $3, K^{C} \cap B \neq \emptyset$; this contradicts the fact that $B \subset K$.

Proof of Proposition 25.4.4. Let $x \in \mathbb{R}$ be a real number, and for every integer $n \geq 1$, let x_{n} be any rational number in the interval $(x-1 / n, x+1 / n)$. Then the sequence x_{n} converges to x. By the sequence criterion for closure, we thus see that any real number is in the closure of \mathbb{Q}.

Proof of Proposition 25.4.5. Same exact proof, except choose each x_{n} to be any irrational number in the interval $(x-1 / n, x+1 / n)$.

[^0]: ${ }^{1}$ It could be any kind of subset: open, closed, neither!
 ${ }^{2}$ Note that X is an element of \mathcal{K}_{B}.

[^1]: ${ }^{3}$ For example, you could take $t_{i}=i /(i+1)$.

