Reading 24

Interiors and neighborhoods

24.1 Interiors

Definition 24.1.1. Let X be a topological space and fix $B \subset X$. Let \mathcal{U}_B denote the collection of open subsets of X that are contained in B. Then the *interior* of B is defined to be the union

$$int(B) = \bigcup_{U \in \mathfrak{U}_B} U.$$

Remark 24.1.2. Informally, the interior of B is the largest open subset of X that is contained in B.

Remark 24.1.3. For any B, we have that $int(B) \subset B$. Moreover, int(B) is an open subset of both B and of X.

Remark 24.1.4. If *B* is open, then int(B) = B. This is because $B \in \mathcal{U}_B$, so

$$int(B) = \bigcup_{U \in \mathfrak{U}_B} U = B \cup \left(\bigcup_{U \neq B, U \in \mathfrak{U}_B} U\right)$$

meaning int(B) contains B (because int(B) is a union of B with possibly other sets). Thus we have that $int(B) \subset B \subset int(B)$, meaning int(B) = B.

Example 24.1.5. We have that $int(\emptyset) = \emptyset$ and int(X) = X.

Example 24.1.6. Let $X = \mathbb{R}^n$ and let *B* be the closed ball of radius *r* about the origin. Then int(B) = Ball(0, r) is the open ball of radius *r*.

To see this, we note that Ball(0,r) is open and contained in B, so $Ball(0,r) \subset int(B)$ by definition of interior. Because $int(B) \subset B$, it suffices to show that no other point of B (i.e., no point in $B \setminus Ball(0,r)$) is contained in the interior of B.

So fix $y \in B \setminus \text{Ball}(0, r)$, meaning y is a point of exactly distance r away from the origin. It suffices to show that there is no open ball containing y and contained in B; for then there is no $U \in \mathcal{U}$ for which $y \in U$.

Well, for any $\delta > 0$, $\operatorname{Ball}(y, \delta) \subset \mathbb{R}^n$ contains some point of distance > r from the origin. So $\operatorname{Ball}(y, \delta)$ is never contained in B. This completes the proof.

24.2 Neighborhoods

Definition 24.2.1. Let X be a space and let x an element of X. A subset $A \subset X$ is called a *neighborhood* of x if there exists some open $U \subset X$ with $x \in U$ for which $U \subset A$.

When A is also open, we say A is an open neighborhood of x.

Remark 24.2.2. In topology, we use the word "neighborhood" usually when we're being lazy. "Neighborhood of x" is shorter than saying "subset containing an open subset containing x."

Note that a neighborhood of x need not be an open subset.

Here is one connection between the ideas of interiors and neighborhoods. Let X be a space. Fix a subset $A \subset X$ and an element $x \in X$.

Proposition 24.2.3. A is a neighborhood of x if and only if the interior of A contains x.

24.3 Exercises on interiors

Exercise 24.3.1. Prove Proposition 24.2.3.

Exercise 24.3.2. Let's compute the interiors of some common examples.

(a) Show that the interior of S^{n-1} (as a subset of \mathbb{R}^n) is empty.

(b) Show that the interior of S^{n-1} – as a subset of itself – is S^{n-1} .

- (c) Show that the interior of Δ^{n-1} (as a subset of \mathbb{R}^n) is empty.
- (d) Show that the interior of Δ^{n-1} as a subset of itself is Δ^{n-1} .
- (e) Show that the interior of \mathbb{Q} (as a subset of \mathbb{R}) is empty.

Exercise 24.3.3. Let $U \subset X$ be an open subset. Show that int(U) = U.

Exercise 24.3.4. Let A and B be subsets of X.

- (a) Show that $int(A \cup B) \supset int(A) \cup int(B)$.
- (b) Show by example that $int(A \cup B)$ is not equal to $int(A) \cup int(B)$.

Exercise 24.3.5. Let X be a metric space (endowed with the metric topology). Show that for any subset A of X, int(A) is the union of all open balls contained in A.

Exercise 24.3.6. Let A and B be subsets of X.

- (a) Show that $int(A \cap B) = int(A) \cap int(B)$.
- (b) Let $\{B_{\alpha}\}_{\alpha \in \mathcal{A}}$ be a possibly infinite collection of subsets of X. Show that $int(\bigcap_{\alpha \in \mathcal{A}} B_{\alpha}) \subset \bigcap_{\alpha \in \mathcal{A}} int(B_{\alpha}).$
- (c) Show by example that $int(\bigcap_{\alpha \in \mathcal{A}} B_{\alpha})$ need not equal $\bigcap_{\alpha \in \mathcal{A}} int(B_{\alpha})$.

24.4 Exercises on neighborhoods

Exercise 24.4.1. Let $X = \mathbb{R}^2$ and let x be the origin. For each description below, find an example of $B \subset \mathbb{R}^2$ fitting the description:

- (a) B is an open neighborhood of x. (This means B is a neighborhood of x, and is an open subset.)
- (b) B is a closed neighborhood of x. (This means B is a neighborhood of x, and is a closed subset.)
- (c) B is a closed and open neighborhood of x.
- (d) B is a closed but not open neighborhood of x.

- (e) B is an open but not closed neighborhood of x.
- (f) B is a neither open nor closed neighborhood of x.
- (g) B is a compact, and not open, neighborhood of x.

Exercise 24.4.2. Let X be a topological space and fix $x \in X$.

- (a) Let B_1, \ldots, B_k be a finite collection of neighborhoods of x. Show that $B_1 \cap \ldots \cap B_k$ is a neighborhood of x.
- (b) Show by example that the intersection of infinitely many neighborhoods of x need not be a neighborhood.

Exercise 24.4.3. Suppose $f : X \to Y$ is a function. Show that the following conditions are equivalent.

- (a) f is continuous.
- (b) For all $x \in X$, if N is a neighborhood of f(x), then the preimage of N is a neighborhood of x.
- (c) For all $x \in X$, if N is a neighborhood of f(x), there exists a neighborhood of x contained in $f^{-1}(N)$.
- (d) For all $x \in X$, if N is an open neighborhood of f(x), there exists an open neighborhood of x contained in $f^{-1}(N)$.
- (e) For all $x \in X$, if N is an open neighborhood of f(x), then the preimage of N is an open neighborhood of x.

Exercise 24.4.4. Suppose $f : X \to Y$ is a function and fix $x \in X$. Show that the following conditions are equivalent.

- (a) (Omitted.)
- (b) If N is a neighborhood of f(x), then the preimage of N is a neighborhood of x.
- (c) If N is a neighborhood of f(x), there exists a neighborhood of x contained in $f^{-1}(N)$.

(d) If N is an open neighborhood of f(x), there exists an open neighborhood of x contained in $f^{-1}(N)$.

Remark: Sometimes, the equivalent conditions above are the definition of f being continuous at x.

Show by example that the following is *not* equivalent to the others:

(e) If N is an open neighborhood of f(x), then the preimage of N is an open neighborhood of x.

Make sure you contrast this exercise with Exercise 24.4.4.

Possible solution to Exercise 24.4.1. (a) \mathbb{R}^2 is an open neighborhood of x.

- (b) \mathbb{R}^2 is a closed neighborhood of x.
- (c) \mathbb{R}^2 is closed and open neighborhood of x.
- (d) D^2 is a closed neighborhood of x that is not open.
- (e) Ball(0, r) for any r > 0 is an open neighborhood of x that is not closed.
- (f) Consider the set $B = D^2 \setminus \{((\sqrt{2})/2, (\sqrt{2})/2)\}$ in fact, we could remove any point from S^1 . This is a neighborhood of x that is neither open nor closed.
- (g) D^2 is a compact and not open neighborhood of x.

Possible solution to Exercise 24.4.3. (a) \implies (b). If N is a neighborhood of f(x), there exists an open V for which $f(x) \in V \subset N$. Since f is continuous $f^{-1}(V)$ is open, while by straightforward arguments using sets we have $x \in f^{-1}(V) \subset f^{-1}(N)$.

(b) \implies (c). If the preimage of N is a neighborhood of x, note that $f^{-1}(N) \subset f^{-1}(N)$ – so the preimage itself is a neighborhood of x contained in $f^{-1}(N)$.

(c) \implies (d). Since (c) holds for all neighborhoods, it holds for open neighborhoods. If M is the neighborhood of x guaranteed by (c), there exists an open subset U satisfying $x \in U \subset M \subset f^{-1}(N)$ by definition of neighborhood. This U is an open neighborhood of x contained in $f^{-1}(N)$.

(d) \implies (a). Suppose $V \subset Y$ is open and let $U = f^{-1}(V)$. If U is empty, it is open. Otherwise, let $x \in U$. Then V is an open neighborhood of f(x)

- it follows from (d) that $f^{-1}(V) = U$ is an open neighborhood of x, and is hence is open.

Possible solution to Exercise 24.4.4. (b) \implies (c). If the preimage of N is a neighborhood of x, note that $f^{-1}(N) \subset f^{-1}(N)$ – so the preimage itself is a neighborhood of x contained in $f^{-1}(N)$.

(c) \implies (d). Since (c) holds for all neighborhoods, it holds for open neighborhoods. If M is the neighborhood of x guaranteed by (c), there exists an open subset U satisfying $x \in U \subset M \subset f^{-1}(N)$ by definition of neighborhood. This U is an open neighborhood of x contained in $f^{-1}(N)$.

(d) \implies (b). If N is a neighborhood of f(x), there is some open subset V satisfying $f(x) \in V \subset N$. Since V is an open neighborhood of f(x), (d) guarantees the existence of an open set U satisfying $x \in U \subset f^{-1}(V)$. Because $U \subset f^{-1}(N)$, (a) follows.

Now, clearly (e) \implies (d). But the converse is not true. As an example, consider a function $f : \mathbb{R} \rightarrow [1]$ with

$$f(x) = \begin{cases} 1 & x \ge \pi \\ 0 & \text{otherwise.} \end{cases}$$

Give the domain the standard topology and the codomain the poset topology. Then if $x > \pi$, we see that $\{1\} \subset [1]$ is an open neighborhood of f(x); but the preimage of [1] is precisely the interval $[\pi, \infty)$ – which is not open. On the other hand, because $x > \pi$, there does exist an open neighborhood of xfully contained in the preimage of $\{1\}$. This shows that (d) does not imply (e).