# Reading 23

# **One-point compactification**

## 23.1 Stereographic projection

Stereographic projection is the function

$$p: S^n \setminus \{(0, \dots, 0, 1)\} \to \mathbb{R}^n, \qquad (x_1, \dots, x_{n+1}) \mapsto \frac{1}{1 - x_{n+1}}(x_1, \dots, x_n).$$

Here is a description of p in words. For brevity, let us call the point  $(0, \ldots, 0, 1) \in S^n$  the *north pole* of  $S^n$ . Given a point  $x \in S^n$  such that x is not the north pole, p sends x to the intersection of

- the line through x and the north pole, with
- the hyperplane  $\{x_{n+1} = 0\}$ , which one can identify with  $\mathbb{R}^n$ .

See Figure 23.1.

Note that the domain of stereographic projection is not all of  $S^n$ , but  $S^n$  minus the north pole. Notice also that p is a bijection; this gives us an informal way to think about  $S^n$ —it is obtained from  $\mathbb{R}^n$  by "adding one point" that plays the role of the north pole of  $S^n$ .

**Remark 23.1.1.** Here is one way to think about this: Imagine a nice smooth rubber ball. If you puncture the rubber ball in one place (say, with a needle), you can actually stretch out the entire rubber ball onto a flat surface. In fact, by stretching and stretching, you can cover the entire plane.



Figure 23.1: A depiction of stereographic projection for  $S^2$ . In blue is the north pole, from three different angles; the red is an element  $x \in S^2$ , and in green is the image of x under stereographic projection. Drawn also are  $S^2$ , the plane  $\mathbb{R}^2$  (embedded as the subset where  $x_3 = 0$ ) and the line connecting x to its image.

And, by adding this one point to  $\mathbb{R}^n$ , we obtain a compact topological space (the sphere). It is important here that we know how to *topologize* this set obtained by adjoining a point to  $\mathbb{R}^n$ . (There are ways to topologize this set that do not result in  $S^n$ , for example.) There is a particularly nice process of adjoining one point to a space, to obtain a new, compact space – *one-point compactification*.

## 23.2 One-point compactification

Let X be a topological space. We are now going to create a new topological space  $X^+$ .

**Definition 23.2.1.** Given a set X, let  $X^+ = X \coprod \{*\}^1$  We endow  $X^+$  with a topology  $\mathcal{T}_{X^+}$  defined as follows:  $U \subset X^+$  is open if either

1.  $* \notin U$  and U is open in X, or

<sup>&</sup>lt;sup>1</sup>In other words,  $X^+$  is the set obtained by adjoining a single point called \* to X.

#### 23.3. BASIC PROPERTIES

2.  $* \in U$  and  $U \cap X$  is the complement of a closed, compact subspace of X.

We call  $X^+$  the one-point compactification of X.

**Remark 23.2.2.** Note that if X is Hausdorff, we may remove the adjective "closed" from the second condition above. (Every compact subspace of a Hausdorff space is closed.)

**Remark 23.2.3.** Sometimes,  $X^+$  is called the *Alexandroff extension* of X, or the *Alexandroff compactification* of X.

## 23.3 Basic properties

**Proposition 23.3.1.**  $\mathcal{T}_{X^+}$  is a topology on the set  $X^+$ .

**Proposition 23.3.2.**  $X^+$  is compact.

Remark 23.3.3. Proposition 23.3.2 justifies the word "compactification."

**Proposition 23.3.4.** If X is compact, then  $X^+$  is homeomorphic to the space  $X \coprod \{*\}$  with the coproduct topology. (The coproduct topology on the union  $X \coprod Y$  is the topology where a subset  $U \subset X \coprod Y$  is open if and only if its intersection with X is open and its intersection with Y is open).

**Proposition 23.3.5.** If  $X = \mathbb{R}^n$ , then  $X^+$  is homeomorphic to  $S^n$ .

**Proposition 23.3.6.** If X is Hausdorff and if every point  $x \in X$  admits an open U and compact K with  $x \in U \subset K$ , then  $X^+$  is Hausdorff.

**Proposition 23.3.7.** If X and Y are homeomorphic, so are  $X^+$  and  $Y^+$ .

## 23.4 Examples/Exercises

**Exercise 23.4.1.** Prove Proposition 23.3.1. (You will want to use at some point that the empty set is a compact space.)

**Exercise 23.4.2.** Let X = \* be the one-element topological space. Write out the topology of the one-point compactification  $X^+$ .

**Exercise 23.4.3.** Let X be a discrete topological space. Is the topology of the one-point compactification  $X^+$  also discrete?

**Exercise 23.4.4.** Let  $\iota: X \to X^+$  denote the inclusion – it sends x to x.

(a) Show that  $\iota$  is continuous.

(b) Prove  $\iota$  has the property that the *image* of any open subset is open.<sup>2</sup>

Exercise 23.4.5. Prove Proposition 23.3.2.

Exercise 23.4.6. Prove Proposition 23.3.7.

Exercise 23.4.7. Prove Proposition 23.3.4.

Exercise 23.4.8. Prove Proposition 23.3.6.

**Exercise 23.4.9.** Given a function  $f : X \to Y$ , we define the function  $f^+: X^+ \to Y^+$  to act by  $x \mapsto f(x)$  and  $* \mapsto *$ .

- (a) Suppose  $f: X \to Y$  is a continuous function. Show by example that  $f^+$  is not necessarily continuous.
- (b) Show that if f is both continuous, and has the property that  $f^{-1}$  of a compact subset is compact<sup>3</sup>, then  $f^+$  is continuous.
- (c) Let  $f: X \to Y$  and  $g: Y \to Z$  be arbitrary functions. Prove  $(g \circ f)^+ = g^+ \circ f^+$ .
- (d) Prove that any homeomorphism is proper.
- (e) For any set X, let  $id_X : X \to X$  denote the identity function. Prove that  $(id_X)^+ = id_{X^+}$ .
- (f) Prove Proposition 23.3.5.

<sup>&</sup>lt;sup>2</sup>Such a continuous map is called an *open* map.

<sup>&</sup>lt;sup>3</sup>This property of f is called *properness*. That is, f is *proper* if preimages of compacts are compact.

### Some possible solutions

Proof of Proposition 23.3.1. (i) We first show  $\emptyset, X^+$  is in this topology. So let  $U = \emptyset$ . Then  $* \notin U$ , so we must check whether  $\emptyset$  is open in X (by condition 1 of the definition of  $\mathcal{T}_{X^+}$ ). It is, by definition of topological space (i.e., because X itself is a topological space). Now let  $U = X^+$ . Since  $* \in U$ , we must check whether  $U \cap X$  is the complement of a closed, compact subspace of X (by condition 2 of the definition of  $\mathcal{T}_{X^+}$ ). It is, because  $U \cap X = X$  and X is the complement of  $\emptyset$ . (Note that  $\emptyset$  is both closed and compact.)

(ii) Now let  $\{U_{\alpha}\}_{\alpha \in \mathcal{A}}$  be an arbitrary collection where  $U_{\alpha} \in \mathcal{T}_{X^+}$  for any  $\alpha \in \mathcal{A}$ . We must show that the union

$$U := \bigcup_{\alpha \in \mathcal{A}} U_{\alpha} \subset X^+$$

is in  $\mathfrak{T}_{X^+}$ .

Note that for any  $\alpha \in \mathcal{A}$ , we know that

 $U_{\alpha} \cap X$ 

has a complement given by a closed subspace of X. (This is true regardless of whether  $U_{\alpha}$  satisfies case 1. or in case 2. of the definition of  $\mathcal{T}_{X^+}$ .) Let us call this closed subspace  $K_{\alpha}$ , and let us call the intersection

$$K := \bigcap_{\alpha \in \mathcal{A}} K_{\alpha}$$

Note that the arbitrary intersection of closed subsets is closed, so  $K \subset X$  is closed. Then by de Morgan's laws, we see that

$$X \cap U = X \cap \left(\bigcup_{\alpha \in \mathcal{A}} U_{\alpha}\right) = \left(\bigcap_{\alpha \in \mathcal{A}} K_{\alpha}\right)^{C} = K^{C}.$$

where the complement is taken inside X. Now, if  $* \notin U$ , then we have shown that  $U^C$  is closed, so by condition 1. of the definition of  $\mathcal{T}^+$ , we see that  $U \subset X^+$  is indeed in  $\mathcal{T}_{X^+}$ .

On the other hand, if  $* \in U$ , then for some  $\alpha \in A$ , we see that  $* \in U_{\alpha}$ . In particular,  $K_{\alpha}$  is not only closed, but also compact. Thus  $K \subset K_{\alpha}$  is a closed subspace of a compact  $K_{\alpha}$ , meaning K itself is compact. This shows that  $U \cap X = K^C$  is the complement of a compact, closed subspace of X, so U is open by condition 2. of the definition of  $\mathcal{T}_{X^+}$ .

(iii) Now we must show that a finite intersection of elements in  $\mathcal{T}_{X^+}$  is in  $\mathcal{T}_{X^+}$ .

So fix  $U_1, \ldots, U_n$ , a finite collection of elements in  $\mathcal{T}_{X^+}$ . For each *i*, let  $K_i = (U_i \cap X)^C$ . Note that  $K_i$  is closed, and is compact if  $* \in U_i$ . We let

$$U = U_1 \cap \ldots \cap U_n \subset X^+$$

and

$$K = K_1 \cup \ldots \cup K_n \subset X.$$

Note that by de Morgan's laws, we again have

$$U \cap X = K^C \subset X$$

(where the complement is again taken inside X).

If  $* \notin U$ , then  $U = K^C$ . Being a complement of a closed subset in X, we see that  $U \subset X$  is open in X, so  $U \in \mathcal{T}_{X^+}$  by condition 1. of the definition.

If  $* \in U$ , then  $* \in U_i$  for every *i*, so by condition 2, each  $K_i$  is not only closed but also compact. Lemma: The finite union of compact subspaces is compact. (Proof: Given an open cover of K, note that the open cover determines a finite subcover of each  $K_i$ . Taking the union of these finite subcovers, we have a finite union of finite collections; hence the resulting union is a finite open cover of K itself.) Thus K itself is compact. By condition 2, U is in  $\mathcal{T}_{X^+}$ .

Proof of Proposition 23.3.2. Let  $\{U_{\alpha}\}_{\alpha \in \mathcal{A}}$  be an open cover of  $X^+$ . By definition of cover, there is some  $\alpha_0 \in \mathcal{A}$  such that  $* \in U_{\alpha_0}$ . So by condition 2 of the definition of  $\mathcal{T}_{X^+}$ , we know

$$X^+ = U_{\alpha_0} \cup K$$

where K is a compact, closed subspace of X and  $K \cap U_{\alpha_0} = \emptyset$ .

Before we go any further, let us point out that  $X \subset X^+$  is an open subset by condition 1 of the definition of  $\mathcal{T}^+$ . Thus the subspace topology of  $K \subset X^+$  is equal to the subspace topology of  $K \subset X$ .

Invoking the definition of open cover, and by definition of subspace topology (for  $K \subset X$ ), we know that the collection

$$\{U_{\alpha} \cap K\}_{\alpha in\mathcal{A}}$$

is an open cover of K. Since K is compact, we can choose some finite collection  $\alpha_1, \ldots, \alpha_n$  so that  $\{U_{\alpha_1} \cap K, \ldots, U_{\alpha_n} \cap K\}$  is an open cover of K. In particular,

$$U_{\alpha_0} \cup U_{\alpha_1} \cup \ldots \cup U_{\alpha_r}$$

is an open cover of  $X^+$  itself. This exhibits a finite subcover of the original open cover, and we are finished.

Proof of Proposition 23.3.4. We must show that  $W \subset X^+$  is open if and only if  $W \cap X$  and  $W \cap \{*\}$  is open.

To see the latter claim, we must prove that the one-element set

$$U = \{*\} \subset X^+$$

is open. This is because  $U \cap X = \emptyset = X^C$ , where the complement is taken in X. But X is closed (as a subset of itself), and is compact by hypothesis, so by condition 2, U is open.

On the other hand,  $W \cap X$  is always open for a one-point compactification this is obvious if  $* \notin W$  by condition 1, and if  $* \in W$ , then  $W \cap X$  is a complement of a (compact and) closed subset of X by condition 2, hence by definition of closedness,  $W \cap X$  is open in X.

This completes the proof.

Proof of Proposition 23.3.7. Given a homeomorphism  $f: X \to Y$ , define a function

$$g: X^+ \to Y^+, \qquad x \mapsto \begin{cases} *_Y & x = *_X \\ f(x) & x \in X. \end{cases}$$

Here,  $*_Y \in Y^+$  represents the "extra point" in the one-point-compactification of Y, and likewise for  $*_X \in X^+$ .

Clearly g is a bijection because f is. Let us show that  $U \subset X^+$  is open if and only if  $g(U) \subset Y^+$  is open.

1. If  $*_X \notin U$ , then  $*_Y \notin g(U)$ . But because f is a homeomorphism, g(U) = f(U) is open if and only if  $U \cap X = U$  is open.

2. If  $*_X \in U$ , then  $*_Y \in g(U)$ . This means that  $U \cap X = K^C$  (where the complement is taken in X) for some compact, closed  $K \subset X$ . But because f is a homeomorphism,  $K \subset X$  is compact and closed if and only if  $f(K) \subset Y$  is also compact and closed. Thus  $f(U) \cap Y$  is the complement of a closed, compact subspace of Y if and only if  $U \cap X$  is the complement of a closed, compact subspace of X. This completes the proof.  $\Box$