
Reading 23

One-point compactification

23.1 Stereographic projection
Stereographic projection is the function

p : Sn \ {(0, . . . , 0, 1)} æ Rn, (x1, . . . , xn+1) ‘æ 1
1 ≠ xn+1

(x1, . . . , xn).

Here is a description of p in words. For brevity, let us call the point (0, . . . , 0, 1) œ
Sn the north pole of Sn. Given a point x œ Sn such that x is not the north
pole, p sends x to the intersection of

• the line through x and the north pole, with

• the hyperplane {xn+1 = 0}, which one can identify with Rn.

See Figure 23.1.
Note that the domain of stereographic projection is not all of Sn, but

Sn minus the north pole. Notice also that p is a bijection; this gives us
an informal way to think about Sn—it is obtained from Rn by “adding one
point” that plays the role of the north pole of Sn.

Remark 23.1.1. Here is one way to think about this: Imagine a nice smooth
rubber ball. If you puncture the rubber ball in one place (say, with a needle),
you can actually stretch out the entire rubber ball onto a flat surface. In fact,
by stretching and stretching, you can cover the entire plane.
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Figure 23.1: A depiction of stereographic projection for S2. In blue is the
north pole, from three di�erent angles; the red is an element x œ S2, and in
green is the image of x under stereographic projection. Drawn also are S2,
the plane R2 (embedded as the subset where x3 = 0) and the line connecting
x to its image.

And, by adding this one point to Rn, we obtain a compact topological
space (the sphere). It is important here that we know how to topologize this
set obtained by adjoining a point to Rn. (There are ways to topologize this
set that do not result in Sn, for example.) There is a particularly nice process
of adjoining one point to a space, to obtain a new, compact space – one-point
compactification.

23.2 One-point compactification
Let X be a topological space. We are now going to create a new topological
space X+.

Definition 23.2.1. Given a set X, let X+ = X
‡{ú}.1 We endow X+ with

a topology TX+ defined as follows: U µ X+ is open if either

1. ú ”œ U and U is open in X, or
1In other words, X

+ is the set obtained by adjoining a single point called ú to X.
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2. ú œ U and U fl X is the complement of a closed, compact subspace of
X.

We call X+ the one-point compactification of X.

Remark 23.2.2. Note that if X is Hausdor�, we may remove the adjective
“closed” from the second condition above. (Every compact subspace of a
Hausdor� space is closed.)

Remark 23.2.3. Sometimes, X+ is called the Alexandro� extension of X,
or the Alexandro� compactification of X.

23.3 Basic properties
Proposition 23.3.1. TX+ is a topology on the set X+.

Proposition 23.3.2. X+ is compact.

Remark 23.3.3. Proposition 23.3.2 justifies the word “compactification.”

Proposition 23.3.4. If X is compact, then X+ is homeomorphic to the
space X

‡{ú} with the coproduct topology. (The coproduct topology on the
union X

‡
Y is the topology where a subset U µ X

‡
Y is open if and only

if its intersection with X is open and its intersection with Y is open).

Proposition 23.3.5. If X = Rn, then X+ is homeomorphic to Sn.

Proposition 23.3.6. If X is Hausdor� and if every point x œ X admits an
open U and compact K with x œ U µ K, then X+ is Hausdor�.

Proposition 23.3.7. If X and Y are homeomorphic, so are X+ and Y +.

23.4 Examples/Exercises
Exercise 23.4.1. Prove Proposition 23.3.1. (You will want to use at some
point that the empty set is a compact space.)

Exercise 23.4.2. Let X = ú be the one-element topological space. Write
out the topology of the one-point compactification X+.
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Exercise 23.4.3. Let X be a discrete topological space. Is the topology of
the one-point compactification X+ also discrete?

Exercise 23.4.4. Let ÿ : X æ X+ denote the inclusion – it sends x to x.

(a) Show that ÿ is continuous.

(b) Prove ÿ has the property that the image of any open subset is open.2

Exercise 23.4.5. Prove Proposition 23.3.2.

Exercise 23.4.6. Prove Proposition 23.3.7.

Exercise 23.4.7. Prove Proposition 23.3.4.

Exercise 23.4.8. Prove Proposition 23.3.6.

Exercise 23.4.9. Given a function f : X æ Y , we define the function
f+ : X+ æ Y + to act by x ‘æ f(x) and ú ‘æ ú.

(a) Suppose f : X æ Y is a continuous function. Show by example that f+

is not necessarily continuous.

(b) Show that if f is both continuous, and has the property that f≠1 of a
compact subset is compact3, then f+ is continuous.

(c) Let f : X æ Y and g : Y æ Z be arbitrary functions. Prove (g ¶ f)+ =
g+ ¶ f+.

(d) Prove that any homeomorphism is proper.

(e) For any set X, let idX : X æ X denote the identity function. Prove that
(idX)+ = idX+ .

(f) Prove Proposition 23.3.5.
2Such a continuous map is called an open map.
3This property of f is called properness. That is, f is proper if preimages of compacts

are compact.
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Some possible solutions
Proof of Proposition 23.3.1. (i) We first show ÿ, X+ is in this topology. So let
U = ÿ. Then ú ”œ U , so we must check whether ÿ is open in X (by condition 1
of the definition of TX+). It is, by definition of topological space (i.e., because
X itself is a topological space). Now let U = X+. Since ú œ U , we must
check whether U fl X is the complement of a closed, compact subspace of X
(by condition 2 of the definition of TX+). It is, because U fl X = X and X
is the complement of ÿ. (Note that ÿ is both closed and compact.)

(ii) Now let {U–}–œA be an arbitrary collection where U– œ TX+ for any
– œ A. We must show that the union

U :=
€

–œA

U– µ X+

is in TX+ .
Note that for any – œ A, we know that

U– fl X

has a complement given by a closed subspace of X. (This is true regardless
of whether U– satisfies case 1. or in case 2. of the definition of TX+ .) Let us
call this closed subspace K–, and let us call the intersection

K :=
‹

–œA

K–.

Note that the arbitrary intersection of closed subsets is closed, so K µ X is
closed. Then by de Morgan’s laws, we see that

X fl U = X fl
Q

a
€

–œA

U–

R

b = (
‹

–œA

K–)C = KC .

where the complement is taken inside X. Now, if ú ”œ U , then we have shown
that UC is closed, so by condition 1. of the definition of T+, we see that
U µ X+ is indeed in TX+ .

On the other hand, if ú œ U , then for some – œ A, we see that ú œ U–.
In particular, K– is not only closed, but also compact. Thus K µ K– is a
closed subspace of a compact K–, meaning K itself is compact. This shows
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that U fl X = KC is the complement of a compact, closed subspace of X, so
U is open by condition 2. of the definition of TX+ .

(iii) Now we must show that a finite intersection of elements in TX+ is in
TX+ .

So fix U1, . . . , Un, a finite collection of elements in TX+ . For each i, let
Ki = (Ui fl X)C . Note that Ki is closed, and is compact if ú œ Ui. We let

U = U1 fl . . . fl Un µ X+

and
K = K1 fi . . . fi Kn µ X.

Note that by de Morgan’s laws, we again have

U fl X = KC µ X

(where the complement is again taken inside X).
If ú ”œ U , then U = KC . Being a complement of a closed subset in X, we

see that U µ X is open in X, so U œ TX+ by condition 1. of the definition.
If ú œ U , then ú œ Ui for every i, so by condition 2, each Ki is not only

closed but also compact. Lemma: The finite union of compact subspaces
is compact. (Proof: Given an open cover of K, note that the open cover
determines a finite subcover of each Ki. Taking the union of these finite
subcovers, we have a finite union of finite collections; hence the resulting
union is a finite open cover of K itself.) Thus K itself is compact. By
condition 2, U is in TX+ .

Proof of Proposition 23.3.2. Let {U–}–œA be an open cover of X+. By defi-
nition of cover, there is some –0 œ A such that ú œ U–0 . So by condition 2
of the definition of TX+ , we know

X+ = U–0 fi K

where K is a compact, closed subspace of X and K fl U–0 = ÿ.
Before we go any further, let us point out that X µ X+ is an open

subset by condition 1 of the definition of T+. Thus the subspace topology of
K µ X+ is equal to the subspace topology of K µ X.

Invoking the definition of open cover, and by definition of subspace topol-
ogy (for K µ X), we know that the collection

{U– fl K}–inA
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is an open cover of K. Since K is compact, we can choose some finite
collection –1, . . . , –n so that {U–1 fl K, . . . , U–n fl K} is an open cover of K.
In particular,

U–0 fi U–1 fi . . . fi U–n

is an open cover of X+ itself. This exhibits a finite subcover of the original
open cover, and we are finished.

Proof of Proposition 23.3.4. We must show that W µ X+ is open if and only
if W fl X and W fl {ú} is open.

To see the latter claim, we must prove that the one-element set

U = {ú} µ X+

is open. This is because U fl X = ÿ = XC , where the complement is taken
in X. But X is closed (as a subset of itself), and is compact by hypothesis,
so by condition 2, U is open.

On the other hand, WflX is always open for a one-point compactification—
this is obvious if ú ”œ W by condition 1, and if ú œ W , then W fl X is a
complement of a (compact and) closed subset of X by condition 2, hence by
definition of closedness, W fl X is open in X.

This completes the proof.

Proof of Proposition 23.3.7. Given a homeomorphism f : X æ Y , define a
function

g : X+ æ Y +, x ‘æ

Y
]

[
úY x = úX

f(x) x œ X.

Here, úY œ Y + represents the “extra point” in the one-point-compactification
of Y , and likewise for úX œ X+.

Clearly g is a bijection because f is. Let us show that U µ X+ is open if
and only if g(U) µ Y + is open.

1. If úX ”œ U , then úY ”œ g(U). But because f is a homeomorphism,
g(U) = f(U) is open if and only if U fl X = U is open.

2. If úX œ U , then úY œ g(U). This means that U fl X = KC (where the
complement is taken in X) for some compact, closed K µ X. But because f
is a homeomorphism, K µ X is compact and closed if and only if f(K) µ Y
is also compact and closed. Thus f(U) fl Y is the complement of a closed,
compact subspace of Y if and only if U fl X is the complement of a closed,
compact subspace of X. This completes the proof.


