
Reading 21

Connectedness

Today we’re going to talk about connectedness.

21.1 Being open and closed in [0, 1]

For reasons that aren’t obvious, let’s see something interesting about the
topology of [0, 1]:

Proposition 21.1.1. Suppose that A µ [0, 1] is a subset which is both closed
and open. Then A is either empty, or equal to [0, 1].

For this, we’ll use a Lemma:

Lemma 21.1.2. If B µ [0, 1] is open, and if b œ B does not equal 0 or 1,
then there exists some ‘ > 0 so that (b ≠ ‘, b + ‘) µ B.

Proof of Lemma 21.1.2. Since B µ [0, 1] is open, by definition of subspace
topology, there exists W µ R open so that B = W fl [0, 1]. Now consider the
intersection W fl (0, 1). This is an open subset of R, being the intersection
of two open subsets—in particular, for any b œ W fl (0, 1), there exists an
open ball fully contained in W fl (0, 1) containing b. Let ‘ be the radius of
this open ball. Then

(b ≠ ‘, b + ‘) = Ball(b; ‘) µ W fl (0, 1) µ W fl [0, 1] = B.
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Proof of Proposition 21.1.1. Suppose B µ [0, 1] is closed and non-empty.
Then B is in fact closed as a subset of R.1 B is obviously bounded, so it
follows that B is compact by Heine-Borel.

Since the inclusion map B æ R is continuous, the extreme value theorem
(Theorem 11.2.3) tells us that B has a maximal element, call it b œ B. If
B is open, then b must equal 1, else Lemma 21.1.2 would contradict the
maximality of b. Likewise, the minimal element in B must equal 0. Putting
everythig together, We conclude that if B is open and closed and non-empty,
then B contains 0 and contains 1.

This shows that BC must not contain 0 and 1.
But now note that if B is open and closed, then BC is open and closed. So

if BC is further non-empty, the previous paragraphs show that BC contains
0 and 1.

We have shown that if B is open and closed, and if both B and BC are
non-empty, then B and BC both contain 0 and 1. Of course, B and BC

cannot both contain 0 and 1. Thus, if B is open and closed, either B or BC

must be empty.

This proposition is powerful. For example, we have the following:

Corollary 21.1.3. Let X be a discrete topological space and fix elements
x, xÕ œ X. Then there exists a path from x to xÕ if and only if x = xÕ.

Proof. Suppose “ : [0, 1] æ X is continuous, and that x is in the image
of “. because X has the discrete topology, the singleton set {x} is both
closed and open. (To see this, recall that every subset of X is open in the
discrete topology. In particular, both {x} and its complement are open.)
Thus, the preimage “≠1({x}) is both a closed and open subset of [0, 1]. By
Lemma 21.1.1, the preimage must be either empty or all of [0, 1]. Because
we assumed x to be in the image,

“≠1({x}) = [0, 1].

In particular, “ is a constant function, so “(0) = “(1) = x.

Example 21.1.4. So, if X is a discrete topological space with two or more
elements, X is not path-connected.

1To see this, note that B
C = W fl [0, 1] for some W µ R open, by definition of subspace

topology. Then we can check that R \ B = W
t

(R \ B), so that B is open in R. In fact,
if I µ X is closed, then B µ I is closed if and only if B is also closed as a subset of X.
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21.2 Connectedness

So, path-connectedness was an intuitive notion: We’ll say a space is path-
connected if any two points can be connected by a path. Confusingly, the
term “path-connected” is not the same as the term “connected” in our cul-
ture.

We now discuss a far less intuitive notion:

Definition 21.2.1 (Connected.). We say that a space X is connected if the
following holds: If A µ X is both open and closed, then either A = X or
A = ÿ.

Example 21.2.2. By Proposition 21.1.1, we know that X = [0, 1] is a con-
nected space.

Example 21.2.3. Let X be a discrete topological space. If X has two or
more elements, X is not connected.

Example 21.2.4. Let X be the subset of R2 drawn below, given the subspace
topology:

Let us label the lower-left component by A, and the upper-right component
by B. I claim that both A and B are each both open and closed.

To see that A is open, simply observe that there is an open ball W µ R2

for which W fl X = A (and then cite the definition of the subspace topology,
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which defines the topology on X µ RR2):

Because B = AC µ X, we conclude B is closed. To see B is open, likewise
observe an open ball in X containing B but not A:

So B is open, meaning A = BC is closed. This shows A µ X is both open
and closed, but A ”= X and A ”= ÿ.

Notice that all our examples connectedness/path-connectedness are the
same. This is because of the following:

Proposition 21.2.5. If X is path-connected, then X is connected.
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Proof. We will prove the contrapositive—that is, if X is not connected, then
X is not path-connected.

Because X is not connected, there exists a subset A µ X which is non-
empty, not all of X, but both open and closed.

So choose x œ A, and choose xÕ œ AC µ X. I claim there is no path from
x to xÕ.

To see this, suppose we have a continuous map “ : [0, 1] æ X for which
“ intersects A, we must have that “≠1(A) is non-empty. On the other hand,
A is both open and closed, so “≠1(A) is both open and closed—this means
“≠1(A) = [0, 1] by Proposition 21.1.1.

That is, if “(t) œ A for some t, then “(t) œ A for every t œ [0, 1]. In
particular, if x = “(0), then xÕ ”= “(1). This proves the claim, and hence the
proposition.

Warning 21.2.6. There exist connected spaces that are not path-connected.

21.3 Being disconnected
Proposition 21.3.1. Let X be a topological space. The following are equiv-
alent:

(a) X is not connected. (See Definition 21.2.1.)

(b) There exist two non-empty open subsets U, U Õ of X for which U flU Õ = ÿ
and X = U fi U Õ.

Definition 21.3.2 (Disconnected.). If a topological space satisfies either of
the equivalent conditions of Proposition 21.3.1, we say that X is disconnected.

21.4 Exercises
Exercise 21.4.1. Prove Proposition 21.3.1.


