Reading 19

Path-connectedness

We are really building up some tools to study spaces. Today, we'll talk about the idea of what it means for a space to be path-connected. It's another nice property of a topological space. It will also lead to our first "invariant" of a topological space!

19.1 Path-connectedness

Let's say you're in a topological space X, and fix two points x_{0} and x_{1}. Is it possible to "continuously walk" from x_{0} to x_{1} ? Let's first try to define what such a continuous walk would be.

We begin with an example.
Example 19.1.1. Let $X=[0,1] \amalg[2,3] \subset \mathbb{R}$, drawn below:

Would you call X connected?
Remark 19.1.2 (Properties of spaces vs. properties of subsets). Above, I used that X was a subset of \mathbb{R} to define the topology of X, but once we know about X 's topology, we could ask the connectedness question of X (without reference to \mathbb{R}). Is the following space connected?
(Importantly, the picture makes no reference to \mathbb{R} itself.) So unlike "closed" or "open," the adjective "connected" makes sense as a property of a space X. And when we ask whether a subset is connected, we are asking about the property of that subset as a space (endowed with the subspace topology). Aside from specifying the topology of the subspace, the parent set is irrelevant to the question of connectedness.

I want to talk today about two different ways to talk about the connectedness of a topological space.

First, some preliminaries: We let

$$
[0,1]
$$

denote the usual closed interval from 0 to 1 . We treat it as a topological space by giving it the subspace topology inherited from \mathbb{R}.

Definition 19.1.3. Let X be a topological space. A continuous path (or path for short) in X is a continuous function

$$
\gamma:[0,1] \rightarrow X .
$$

Example 19.1.4. Below is an image of a possible path $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$.

Note that a path need not be injective (it can cross over itself).
Definition 19.1.5. Let X be a topological space, and fix a path $\gamma:[0,1] \rightarrow$ X. We say that γ is a path from $\gamma(0)$ to $\gamma(1)$.

The following is the most intuitive definition of connectedness:
Definition 19.1.6. Let X be a topological space. We say that X is pathconnected if for any two points $x, x^{\prime} \in X$, there exists a path from x to x^{\prime}.

We can straightforwardly check that path-connectedness is indeed a property of topological spaces preserved by homeomorphisms (see Exercise 19.3.1).

Remark 19.1.7. In fact, the proof method shows that if there is a continuous surjection from X to Y, then the path-connectedness of X implies the pathconnectedness of Y.

19.2 Examples

\mathbb{R} and \mathbb{R}^{n} are path-connected. (See Exercises 19.3 .2 and 19.3.3.)
Let's also see some examples of spaces that are not path-connected. In the following examples, the main tool we use will be the intermediate value theorem from calculus.

Example 19.2.1. Let $X=[0,1] \amalg[2,3] \subset \mathbb{R}$, drawn below as before:

Then X is not path-connected.
Indeed, I'll take x to be some point in $[0,1]$ and x^{\prime} to be some point in $[2,3]$. Suppose (for the purpose of contradiction) that there is a path

$$
\gamma:[0,1] \rightarrow X
$$

from x to x^{\prime}. Then the composition

$$
f:[0,1] \xrightarrow{\gamma} X \rightarrow \mathbb{R}
$$

(where the second map is the inclusion map) is continuous. By the intermediate value theorem from calculus, for any value y such that $x \leq y \leq x^{\prime}$, there must be some $t \in[0,1]$ such that $f(t)=y$.

But γ has image contained in X, and in particular, the composition f has no image in the open interval $(1,2)$. In particular, we have been led to a contradiction.

Example 19.2.2. Let X be the subset of \mathbb{R}^{2} drawn below, given the subspace topology:

Then X is not path-connected. The proof is similar to the previous example, so I will be brief: By way of contradiction, suppose $\gamma:[0,1] \rightarrow X$ is a continuous path from x to x^{\prime}, where x is in the lower-right component of X and x^{\prime} is in the upper-left component. Then consider the composition

$$
f:[0,1] \xrightarrow{\gamma} X \rightarrow \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

where the middle arrow is the inclusion, and the last arrow is the projection map sending $\left(x_{1}, x_{2}\right) \mapsto x_{1}$. Then f is continuous, being a composition of continuous functions; but again, f will violate the intermediate value theorem.

Example 19.2.3. Let X be the subset of \mathbb{R}^{2} shaded below, given the subspace topology:

Then X is not path-connected. The proof is similar to the previous example, so I will be brief: By way of contradiction, suppose $\gamma:[0,1] \rightarrow X$ is a continuous path from x to x^{\prime}, where x is in the middle component of X and
x^{\prime} is in the outer component. Then consider the composition

$$
f:[0,1] \xrightarrow{\gamma} X \rightarrow \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

where the middle arrow is the inclusion, and the last arrow is now the map sending an element $y \in \mathbb{R}^{2}$ to the number $d(x, y)$. Then f again violates the intermediate value theorem.
(Here, we are using the very nice fact that $d(x,-)$ is a continuous function on any metric space.)

Remark 19.2.4. In studying path-connectedness, we may draw pictures or use arguments reminiscent of analysis class. This is because of the central role of the real line in these discussions ($[0,1]$ is a subspace of \mathbb{R}), and because your analysis class is devoted to the study of the real line.

19.3 Exercises

Exercise 19.3.1. Prove: If X and Y are homeomorphic, then X is pathconnected if and only if Y is.

Exercise 19.3.2. Let $X=\mathbb{R}$. Show X is path-connected.
Exercise 19.3.3. More generally, let $X=\mathbb{R}^{n}$ (with the standard topology). Show X is path-connected.

Exercise 19.3.4. For any $n \geq 1$, let X be the union of the origin and S^{n}; we give X the subspace topology inherited from \mathbb{R}^{n+1}. Prove that X is not path-connected.

Possible solution for Exercise 19.3.1. Suppose X is path connected. We must show Y is path-connected. So choose $y_{0}, y_{1} \in Y$. We must exhibit a continuous path from y_{0} to y_{1}. To do this, let $f: X \rightarrow Y$ be a homeomorphism, g the inverse to f, and let $x_{i}=g\left(x_{i}\right)$. Because X is path-connected, there is a continuous map $\gamma:[0,1] \rightarrow X$ satisfying $\gamma(0)=x_{0}$ and $\gamma_{1}=x_{1}$. Because f is continuous, $f \circ \gamma$ is a continuous function from $f\left(x_{0}\right)$ to $f\left(x_{1}\right)$. We are finished by observing that $f\left(x_{i}\right)=y_{i}$.

If Y is path-connected, we can see that X is path-connected by the same argument.

Possible solution for Exercise 19.3.2. To see this, fix any two points $x, x^{\prime} \in$ X. Then define a function γ by "drawing a straight path from x to x^{\prime}." The previous sentence was vague, so let's make it precise: Define

$$
\gamma:[0,1] \rightarrow X, \quad \gamma(t)=x+t\left(x^{\prime}-x\right)
$$

Note that x and x^{\prime} are constants (we've fixed them!) while t is the variable.
γ is a continuous function. Let's shed some light on why: Because we've given $[0,1]$ the subspace topology, the inclusion

$$
[0,1] \rightarrow \mathbb{R}, \quad t \mapsto t
$$

is a continuous function. Now let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the linear function $t \mapsto$ $x+t\left(x^{\prime}-x\right)$. This is continuous (for example, it's a polynomial). Hence the composition

$$
[0,1] \rightarrow \mathbb{R} \xrightarrow{f} \mathbb{R}
$$

is continuous. On the other hand, this composition is precisely γ.
Finally, note that $\gamma(0)=x$ and $\gamma(1)=x^{\prime}$.
Possible solution for Exercise 19.3.3. To see this, given x and x^{\prime} in X, again define

$$
\gamma:[0,1] \rightarrow \mathbb{R}^{n}, \quad t \mapsto x+t\left(x^{\prime}-x\right) .
$$

Note now that we are using vector scaling and vector addition/subtraction to define γ. This is continuous because because the standard topology on \mathbb{R}^{n} is the product topology. By the universal property of the product topology, to check the continuity of γ, we only need to check that every component of γ is continuous. That is, we just need to check that the n functions

$$
t \mapsto x_{1}+t\left(x_{1}^{\prime}-x_{1}\right), \quad \ldots, \quad t \mapsto x_{n}+t\left(x_{n}^{\prime}-x_{n}\right)
$$

are continuous. But we saw this already in Exercise 19.3.2!
So γ is continuous, and γ is a path from x to x^{\prime}.

