
Reading 11

Compactness, III. Extreme
value theorem.

11.1 John the aspiring ballerino
Here’s a story.

John loved ballet. He would go watch ballet twice a week, over 90 minutes
each time. He loved the movements, he loved the music, he loved everything
about ballet and watched with a passion. He longed to be a ballerino.

He signed up for an audition for the local ballet troupe. On the day of
his audition, he got up on stage. He was asked if he was familiar with Swan
Lake. He said yes, he’d seen it over and over. He had watched YouTube
videos analyzing dancers, had heard dancers speak about their experiences
performing Swan Lake, he had seen it all.

John was asked to perform any sequence from it.
And of course, he could not. He had never danced on his own. He had

never taken lessons, or had a teacher; but worst, he had never spent the
hours necessary to practice, to watch himself in a mirror, to dance.

Watching lectures will not teach you math. You have to try to dance
yourself, and to learn how to improve what you see in the mirror. When you
take an exam, you will not be assessed for the time you spent as an audience.
You will be assessed for the time you spent alone practicing.

Remark 11.1.1. Practice does not mean merely doing something over and
over. Practice – as any successful musician or performer will tell you – is
about introspection and self-reflection. Are you really doing this movement
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correctly? Are you accurately reflecting the choreography with your body?
It takes time and mental energy to engage in practice, and you must do it.

11.2 Three results today
Today we’ll cover three results.

Proposition 11.2.1. Let A µ R be compact.1 Then there exists a maximal
element in A.

More precisely, there exists a œ A such that for all aÕ œ A, a Ø aÕ.2

Proof. By the Heine-Borel theorem, A is both closed and bounded.
Because A is bounded, there exists some r > 0 such that A is contained

in the interval (≠r, r) µ R. In particular, there is some real number b for
which aÕ œ A =∆ aÕ Æ b. Let us call such a number b an upper bound for
A. (Note that there are infinitely many upper bounds for A.) By the least
upper bound property of the real line3, the set of upper bounds of A has a
minimal element called b0. In other words, b0 is the smallest real number
satisfying the upper bound property.

I claim that b0 is an element of A. (This would prove the proposition.)
To see this, for every integer n Ø 1, we simply choose an element an œ A
such that dist(an, b0) Æ 1/n. This is possible because b0 is the least upper
bound.

Then the sequence {an}nØ1 converges to b0. (Given any ‘ > 0, choose N
large enough so that 1/N < ‘, and we see that dist(an, b0) < ‘ for all n Ø N .)

But A is closed, so b0 œ A.

Proposition 11.2.2. Let X be compact, and f : X æ Y a continuous
function. Then the image of f (given the subspace topology inherited from
Y ) is compact.

1By the Heine-Borel theorem, this means A is a closed and bounded subset of R. Also
as usual, when we say that A is compact, we are really endowing A with the subspace
topology inherited from the standard topology on R. This is important, because a set may
admit many di�erent topologies.

2Here we are using the usual order on R—whether two numbers are less than or equal
to each other.

3This is a property of the real line we won’t go over in this class; you’ll see it, or have
learned about it, in analysis.
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Combining the above results gives us a result you are familiar with from
calculus; but we have generalized to the case where the domain is any com-
pact topological space.

Theorem 11.2.3 (Extreme Value Theorem). Let X be compact, and let
f : X æ R be a continuous function. Then f attains a maximal value.

That is, there exists some x œ X such that, for every xÕ œ X, we have
that f(x) Ø f(xÕ).

Remark 11.2.4. The condition that X be compact is necessary. For exam-
ple, let X = R and let f : X æ R be the identity function, so f(x) = x.
This attains no maximal value.

For the rest of today, you prove Proposition 11.2.2 and the Extreme Value
Theorem. You will do this even if you’ve read a proof before – this is similar
to a dancer practicing until they can nail down a move, or to any other
athlete/musician/artist honing their craft.

Exercise 11.2.5. Prove Proposition 11.2.2.

Exercise 11.2.6. Prove Theorem 11.2.3.

11.3 Interlude: Why compactness?
The notion of compactness is wonky. It shouldn’t seem natural the first time
you see it, because you have no idea how to use the notion.

Let me just say that, often, the “nicest” spaces to work with happen to
be compact. Though we don’t know it yet, the easiest spaces to think about
are often compact.

The following will be imprecise.
If somebody asks you think of a set that you feel comfortable with, many

of you may choose a set out of famiiliarity (like Z or R), or out of “smallness”
(like a set with two elements). Indeed, the sets that seem least scary to you
are probably the finite sets. Knowing that a set is finite gives you some
emotional comfort.

Moreover, knowing that a set is finite will put some restrictions on how
hard proofs can be about that set. For example, any function f from a finite
set A to R must have a minimum and maximum; after all, f takes on only
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finitely many values, so you can just compare them all to each other. (This
strategy breaks down horribly if A is not finite, of course.)

As it turns out, compact spaces are as comforting to topologists as finite
sets are to you.

Let me give some sophisticated indication as to why. By nature of the
definition of compactness, this indication will make heavy use of the notion
of open covers.

What are open covers good for? It turns out that you can think of any
space as “glued” out of an open cover. What do I mean?

A useful analogy to keep in mind is how a world atlas can tell you how
to reconstruct (the surface of) the earth. You can imagine that each page of
an atlas represents an open subset of the surface of the earth. (It’s not quite
true; you want to remove the “boundary” edges of each page of the atlas to
get an actual open subset of the surface of the earth.) Now, you could tear
out every page of your beautiful atlas, and you could papier-mache the pages
together in a way that’s faithful to the way the world is. For example, Page
23 of the atlas might contain a region around Texas, and so might Page 35.
Then in your papier-mache, you should make sure that those regions match
up propertly.

The result—of gluing together pages of the atlas in a way that respects
overlapping regions—will be a wet, clumpy, but nevertheless a representation
of the (surface of the) earth.

Well, let U = {U–} be an open cover of a space X. You might think of
each U– as some page of an atlas for X.

Claim. You can construct (a space homeomorphic to) X by gluing to-
gether the U–.

What does this claim actually mean? As a set, we know that t
U– = X

by definition of cover. But can we topologize the lefthand side in such a way
that this equality actually becomes a homeomorphism?

Moreover, in our atlas analogy, the U– were pages of an atlas, completely
separate.

Here is what compactness of X allows for: Even if somebody gives you an
atlas of X with an infinite number of pages, you can guarantee that you only
need finitely many of those pages of the atlas to create X. In particular, to
study X, you need only study things about finitely many pages of the atlas.

That this is true for any complicated atlas of X is the power of compact-
ness.
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11.4 Interlude: Showing sets are closed or
bounded

Compact spaces are nice—we saw from the extreme value theorem that com-
pact spaces are generalizations of closed, bounded intervals. The Heine-Borel
theorem tells us that we should figure out ways to determine whether certain
subsets A µ Rn are closed, and whether they are bounded.

Remark 11.4.1. Some of the most important theorems in math tells us
when two di�erent criteria are equivalent. For example, if a space arises
as a subspace of Euclidean space, the Heine-Borel theorem tells us that the
idea of compactness (which has to do with open covers) is equivalent to the
idea of being closed and bounded in Euclidean space (which has to do with
complements being open, and being at most some finite distance away from
the origin). These are two very di�erent kinds of criteria.

So if two criteria are equivalent, which do you use?
This depends very much on how the space in question is defined. Some-

times, A is defined in a way where it seems very di�cult to verify that A
is a closed subset of Rn, for example. In which case, the “every open cover
admits a finite subcover” criterion may be easier to verify. In life, usually,
the way that A is defined tells you the way you should prove A. If A is made
of plastic, it’s usually the case that plastic-y methods are e�ective at dealing
with A. Likewise, if A is defined using particular kinds of language, that
kind of language will be most e�ective at dealing with A.

The major advances in mathematics arise when people discover that a
language quite separate from the original definition of a thing happens to be
e�ective at studying that thing. The Heine-Borel theorem is an example of
how the language of open covers is incredibly useful at studying very concrete
problems about subspaces of Euclidean space.

11.4.1 Strategies for recognizing/proving that some-
thing is closed

So let’s talk about ways to identify when a subset A of Rn might be closed.

1. The complement of A is open.
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2. A is the intersection of (possibly infinitely many) other sets known to
be closed.

3. A is the union of finitely many sets known to be closed.

4. A is the pre-image of a closed set under a continuous function. (This is
common when A is defined by an equation. Often times, the equation
involves only continuous functions. For example, if A is the set of those
points (x1, x2) satisfying the equation x3

2 + x1 = 3, then you know that
A is the preimage of the set {3} under the function (x1, x2) ‘æ x1 + x3

2
from R2 to R. This function is continuous because it is polynomial, so
the preimage of {3}—which is a closed subset of R—is also closed.)

5. For every sequence in A which converges to some element b in Rn, one
can conclude that b œ A.

As you can see, there are many ways to prove that A is closed when A
is a subset of Rn. (In fact, every method except the last is a valid method
when A is a subspace of any topological space X).

Example 11.4.2. Prove that the n-simplex

�n = {(x0, . . . , xn) œ Rn+1 | Each xi Ø 0, and
nÿ

i=0
xi = 1} µ Rn+1

is a closed subset of Rn+1.
For this, I would not recommend trying to show that the complement of

�n is open, though it is possible.
Notice that the set �n is defined using inequalities and equations. In-

equalities and equations are signs that a set is defined as the preimage of
something, while the fact that there are multiple conditions usually means
that the set is an intersection of other sets.

So first, let’s note that a point of �n has to satisfy the following condi-
tions:

• For every i = 0, . . . , n, xi must be non-negative.

• The sum x0 + x1 + . . . + xn must equal 1.
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The last condition tells us that �n must be contained in the preimage of {1}
under the function

f : Rn+1 æ R, (x0, x1, . . . , xn) ‘æ x0 + x1 + . . . + xn.

The first condition tells us that �n must be in the preimage of [0, Œ) under
the functions

pi : Rn+1 æ R, (x0, . . . , xn) ‘æ xi

for each i. (There are functions p0, p1, . . . , pn.) The above functions are all
continuous, while we’ve seen in previous classes that {1} and [0, Œ) are both
closed subsets of R.

Finally, the fact that a point is in �n if and only if it is in all of the
preimages above shows that �n is the intersection of these closed subsets.
Explicitly,

�n = f≠1({1})
‹

p≠1
0 ([0, Œ))

‹
p≠1

1 ([0, Œ))
‹

. . .
‹

p≠1
n ([0, Œ)).

As mentioned above, each of these sets in the intersection is known to be
closed. So the intersection itself is closed. This shows that �n is closed.

Possible solution for Exercise 11.2.5. We must prove that f(X) is compact.
Instead of the function f : X æ Y , consider the function f Õ : X æ f(X)
which sends any x œ X to f(x) œ f(X). The function f Õ is continuous by
the universal property of the subspace topology (for f(X)).

Let V be any open cover of f(X). Then because f Õ is continuous, and by
the construction of pullback open covers,

U := {U µ X | U = (f Õ)≠1(V ) for some V œ V}

is an open cover for X. Because X is compact, we may choose a finite
subcover {U1, . . . , Un}. For each i = 1, . . . , n, choose V œ V to be an open
subset for which Ui = (f Õ)≠1(Vi).

I now claim that the collection {V1, . . . , Vn} is a subcover of V. It su�ces
to show that V1

t
. . .

t
Vn = f(X). To see this, choose y œ f(X). Then

by definition of image, there is some x œ X for which f(x) = y. Because
{U1, . . . , Un} is an open cover, there is some i for which x œ Ui. In other
words, there is some i for which x œ (f Õ)≠1(Vi), meaning f Õ(x) œ Vi. But
f Õ(x) = f(x) = y, so we conclude y œ Vi. This shows that the union
V1

t
. . .

t
Vn contains f(X); because this union is a priori a subset of f(X),

we see that the union equals f(X).
This completes the proof.
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Possible solution for Exercise 11.2.6. The image f(X) µ R is compact by
Proposition 11.2.2. Thus it has a maximal value by Proposition 11.2.1.


