
Reading 10

Compactness, II. Heine-Borel
theorem.

Last time we learned about covers, open covers, and subcovers. After seeing
examples, we culminated with the definition of compactness.

We saw that finite spaces are compact, that posets with minimal elements
are compact, and (without proof) that [0, 1] µ R is compact when equipped
with the subspace topology.

We saw that Rn is not compact.
Today’s main result (that you are expected to know) is the Heine-Borel

theorem.

10.1 The Heine-Borel Theorem
Let’s keep building up our examples of compact spaces. There’s a theorem
called the Heine-Borel theorem that actually tells us exactly all the subsets
of Rn that are compact (with respect to the subspace topology).

To state the theorem succinctly, we’ll want to learn another term.

Definition 10.1.1. Let A µ Rn. We say that A is bounded if there exists
some positive real number r > 0 such that

A µ Ball(0, r).

In other words, there is some big number r so that every point of A is at
most r units away from A.
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Equivalently, A is called bounded if there is some r > 0 such that, for
every a œ A, we have that dist(0, a)—the distance from the origin to a—is
less than r.

Now, it turns out we can completely describe which subsets of Rn are
compact:

Theorem 10.1.2 (Heine-Borel theorem). Let A be a subset of Rn.
Then A is compact if and only if A is both closed and bounded.

Remark 10.1.3. Note that being closed and bounded are properties of A
as a subset of Rn. When we endow this subset with the subspace topology
inherited from Rn, we may make sense of what it means for A to be compact.
And that is what we mean.

So, put in a more wordy fashion, the Heine-Borel theorem says: A, with
the subspace topology, is compact if and only if A is closed and bounded as
a subset of Rn.

We won’t prove the Heine-Borel theorem today. But you may use it freely
from now on.

To make good use of the Heine-Borel theorem, we’ll want tools to decide
when a subset of Rn is closed, and when it is bounded.

The homework will have you determine whether certain subsets of Rn are
closed, are bounded, both, or neither.

Because it’s usually straightforward to decide whether a subset of Rn is
bounded or not (you just need to determine whether elements in that subset
can be arbitrarily far away from the origin) we’ll focus on a study of closed
subsets of Rn.

10.2 Closed subsets
Throughout this section, we’re going to assume we have placed the standard
topology on Rn.

Remark 10.2.1 (Two skills with which you must be proficient). By their
very definition, closed subsets often require us to demonstrate something
about complements of sets. So most proofs involving closed subsets will
involve some ingredient of complements; so you will want to be fluent with
computing complements.
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On the other hand, once you understand a complement, to prove it is
open, you must learn how to construct open balls (by definition of open in
the standard topology of Rn).

10.2.1 Some easy closed subsets of Rn

Exercise 10.2.2. Let A = {x œ Rn | dist(0, x) Ø 5}. That is, this is the set
of points that are distance 5 or greater from the origin.

Prove A is closed.

Exercise 10.2.3. Let A = {x œ R2 | x2 = 0}. This is otherwise known as
the x2-axis. Prove that A is closed.

Proposition 10.2.4. The following are all closed subsets of R:

1. A set consisting of a single point.

2. For any real number a, the intervals [a, Œ) and (≠Œ, a].

Exercise 10.2.5. Prove Proposition 10.2.4.

10.2.2 Ways to make new closed subsets
Now that we have some simpleton collections of closed subsets (of R and of
Rn) let’s see if we can make some more sophisticated ones.

As I mentioned before, because the definition of closedness involves com-
plements, so will many proofs. The above properties are a straightforward
consequence of de Morgan’s laws, which are the most useful tools for un-
derstanding unions and intersections of complements. We will assume these
without proof:

Proposition 10.2.6 (de Morgan’s laws). The complement of a union is
the intersection of the complements. And the union of complements is the
complement of the intersection.

In symbols, for any collection of sets {B–}–œA, we have that
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(ii) and (iii) below helps us make new closed subsets out of old ones:
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Proposition 10.2.7. Let X be a topological space with topology T. Let K
be the collection of closed subsets of X (so that B œ K ≈∆ BC œ T).
Then the following hold:

(i) ÿ, X œ K.

(ii) K is closed under finite unions. That is, if B1, . . . , Bn are closed subsets
of X, then the union B1

t
B2 . . .

t
Bn is also a closed subset of X.

(iii) K is closed under arbitrary intersections. That is, if we have an arib-
trary collection {B–}–œA of closed subsets of X, then the intersectionu

–œA B– is also a closed subset of X.

(ii), in plain English, says the finite union of closed sets is closed. (iii)
says that the intersection of closed sets is closed. You see the similarity with
the axioms of a topology, except that the finiteness condition is swapped.

Exercise 10.2.8. Prove Proposition 10.2.7.

Exercise 10.2.9. We saw earlier that [a, Œ) µ R is closed. Likewise, we
know that (≠Œ, b] is closed.

Assuming a > b, prove that the closed interval [a, b] µ R is closed (Hint:
intersections of closed sets).

Given some real numbers a1 < a2 < . . . < a2n, show that the union

[a1, a2]
€

[a3, a4]
€

. . .
€

[a2n≠1, a2n]

is closed. (Hint: A finite union of closed subsets is...?)
Likewise, if A µ R is a finite subset, prove that A is closed. (Hint: A

finite union of closed subsets is...?)

10.2.3 Making closed sets using preimages
The following is another method of creating closed subsets:

Proposition 10.2.10. Let X and Y be topological spaces and let f : X æ Y
be a continuous function. Then if B µ Y is closed, then f≠1(B) is closed.

Exercise 10.2.11. Prove Proposition 10.2.10.

Remark 10.2.12. In fact, a function f : X æ Y is continuous if and only if
the preimage of any closed subset of Y is closed (Proposition 7.7.2). So this
is an equivalent definition of continuity.
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In other words, once you start having a wealth of closed subsets of some
space Y , and a wealth of continuous functions to Y , then we can start dis-
covering many closed subsets of X.

Given our wealth of continuous functions (see Example 7.6.4), we can
now exhibit all kinds of closed subsets of Rn.
Exercise 10.2.13. (a) Show Sn≠1 µ Rn is closed.

(Hint: Sn≠1 is the preimage of the one-element set {1} µ R (which is
closed) with respect to the function x ‘æ dist(0, x) (which is continuous).)
(Bonus: Note that this sphere is also bounded, so Sn≠1 is compact when
given the subspace topology inherited from Rn.)

(b) Show the unit disk Dn µ Rn is closed.
(Hint: Dn is the preimage of the interval [0, 1] (which is closed in R) with
respect to the function x ‘æ dist(0, x) (which is continuous).) (Bonus:
Since Dn is bounded, Dn is compact by the Heine-Borel theorem.)

(c) Fix an integer i between 1 and n. Show that the “ith upper half space”
{x œ Rn | xi Ø 0} is closed.
(Hint: This is the preimage of the interval [0, Œ) (which is closed in R)
under the projection map x ‘æ xi (which is continuous).) (Comment:
This is not bounded, so the upper half space is closed and not compact.)

(d) Show the “non-negative octant”

{x œ Rn | For all i, xi Ø 0

is closed.
(Hint: The octant is the intersection of the upper half-spaces from the
previous example (and an intersection of closed sets is closed.) (Remark:
This set is also not bounded.)

(e) Show that the hyperplane

{(x0, . . . , xn) |
nÿ

i=0
xi = 1} µ Rn+1

is closed.
(Hint: This set is the preimage of the singleton set {1} (which is closed
in R) under the function (x0, . . . , xn) ‘æ x0 + x1 + . . . + xn (which is
continuous).) (Note: This set is not bounded.)
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(f) Show that the n-simplex �n µ Rn+1 is closed.
(Hint: The n-simplex can be expressed as the intersection of the hy-
perplane from the previous example with the positive octant.) (Bonus:
This set is bounded, so the n-simplex (given the subspace topology) is
compact by the Heine-Borel theorem.)

(g) Let f : R æ R be a continuous function. Show that the graph of f ,
which is defined to be the subset of R2 defined by

{(x1, x2) | f(x1) ≠ x2 = 0}

is a closed subset of R2.
(Hint: This is the preimage of {0} (which is a closed subset of R) under
the function R2 æ R, (x1, x2) ‘æ f(x1) ≠ x2. This is a continuous map
because it is obtained by combining continuous functions together. (The
notion of “combining” is left vague for the moment.) (Note: This set
is not bounded—for example, there are points on the graph of f with
arbitrarily large x1 coordinate.)

(h) Let f : Rn æ R be a continuous function, fix a real number a, and
consider the set

{x | f(x) Ø a}.

Show this is a closed subset of Rn.
(Hint: The set is a pre-image of the set [a, Œ) (which is closed in R)
under the map x ‘æ f(x) ≠ a. )
You can take finite unions and arbitrary intersections of the above exam-

ples to produce many, many closed subsets of Rn.

10.3 A useful fact: You can pull back open
covers

Proposition 10.3.1. Let f : X æ Y be a continuous function, and let V be
an open cover of Y . Define

U := {U µ X | U = f≠1(V ) for some V œ V.

Then U is an open cover of X.
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The math lingo for this proposition is that open covers “pull back.” We
call U the pull-back of V.

Exercise 10.3.2. Prove Proposition 10.3.1.

A special example of this is when A is a subset of X, and iA : A æ X
is the inclusion function. Then any open cover of the big space X “pulls
back” to an open cover of A. In this case, i≠1

A (V ) has a particular simple
interpretation, as

i≠1
A (V ) = A fl V.

10.4 Useful facts about compactness
We haven’t seen yet why compactness is useful. Here is a first sign:

Proposition 10.4.1. Let X be compact.1 Fix a continuous function f :
X æ Y . Then the image of f—endowed with the subspace topology inherited
from Y —is compact.

In words, the image of a compact space is compact (so long as the image
is taken with respect to a continuous function).

Exercise 10.4.2. Prove Proposition 10.4.1.

Remark 10.4.3. Thus, compactness is one of the few properties that “push
forward” under a continuous map. Usually, preimages behave well under
continuity by definition. We’ve already seen examples where preimages of
compact spaces need not be compact, but here we see that images of compact
spaces are always compact.

In the above proof, we have put together some of the wonderful ingredients
we’ve learned so far—the universal property of subspaces, and that open
covers pull back, for example.

Here is a corollary of the above fact:

Corollary 10.4.4. Let X be a compact topological space, and let f : X æ R
be a continuous function. Then f(X) is compact.

1Note that at this point, we may infer that X is a topological space; this is because
“compact” is an adjective that only makes sense for topological spaces.
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Now, let me state that it is incredibly common to study functions from a
space into R. For example, if X is the set consisting of points on the surface
of the earth, f : X æ R could be a function sending a point x to the height
of x above/below sea level. Or it could send x to the temperature at x, or
the pressure, et cetera.

As you well know, there are points of “highest elevation” on earth. It also
turns out that, if you assume the temperature function is continuous, there
will (at any given moment time) be a point of highest and lowest temperature.
This is a consequence of the fact that we can say what all compact subsets
of R must look like! It turns out that every compact subset of R contains a
maximal and minimal element. We will get to that later.

Here is another useful fact.

Proposition 10.4.5. Let X be a compact topological space, and let A µ X
be a closed subset. Then A (with the subspace topology inherited from X)
is compact.

In other words, closed subsets of compact spaces are compact.

Proof. We must show that every open cover of A admits a finite subcover.
Choose an open cover U of A. By definition of subspace topology, for

every U œ U there is some V œ TX such that U = V fl A.2 Choose one V for
every U œ U, and let V denote the collection of these chosen V . (So V is in
bijection with U.)

Now consider the collection W = V
t{AC}. That is, W consists of the

sets V , and of another set called AC . Note that AC is open because A is
closed; so every member3 of W is open.

Moreover, I claim that W is a cover of X. Indeed, a point of x is either in
A or not. If x is not in A, then x œ AC , which is a member of W. If x œ A,
then there is some U œ U for which x œ U . In particular, x is in the V we
chose to correspond to U .

This shows that W is an open cover.
By compactness of X, W admits a finite subcover. But if W is an open

cover of X, its pull-back to A is an open cover of A. Moreover, we see that
i≠1
A (Vi) = Vi flA is precisely equal to some Ui œ U. So this pullback is a finite

subcover of U, proving that A is compact.
2As usual, TX stands for the topology on X.
3Member is a synonym for element. So a member of a set is the same thing as an

element of a set.
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10.5 Bonus: Relation to “bounded sequence”
in analysis

Remark 10.5.1 (Bounded sequences). In analysis, you may have heard
about “bounded” sequences. This is a similar use of the word bounded. A
sequence a1, a2, . . . is called bounded if there is some r > 0 such that for
every i, ai œ Ball(0, r).

In real analysis, you also hear about sequences being bounded above or
bounded below. We won’t use these notions as much in this course. Regard-
less, I’ll tell you what these mean. A sequence a1, a2, . . . is bounded above if
there is some real number t such that, for every i, ai < t.

Likewise, a sequence a1, a2, . . . is bounded below if there is some real num-
ber s such that, for every i, ai > s.

Given a sequence a1, a2, . . ., the following are equivalent:
(i) The sequence is bounded.

(ii) The sequence is bounded above and bounded below.
I promise you can prove the equivalence of these two statements on your
own. But now, we will ignore the notion of boundedness for sequence, and
concentrate on the notion of boundedness in Definition 10.1.1.

10.6 Possible solutions
Possible solution to Exercise 10.2.5. Choose a point x œ Rn. We must show
that A = {x} is closed. There are two ways to see this. Any sequence
a1, a2, . . . ,in A is a “constant” sequence, and hence converges to x (which is
in A). Thus A satisfies the “convergent sequence” criterion of closedness you
proved in homework.

Another way to see this: AC is equal to R \ {x}. This can be written as
a union of open intervals of finite radius, so is open.

As for [a, Œ), let A denote the collection of all pairs (x, r) œ R ◊ R0 so
that the intersection of the open interval (x ≠ r, x + r) and [a, Œ) is empty.
Letting U(x,r) be the open ball of radius r about x—also known as the open
interval (x ≠ r, x + r)—we see that the complement of [a, Œ) is the union

€

(x,r)œA

Ball(x, r).
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So [a, Œ) has open complement. The proof for (≠Œ, a] is nearly identical.

Possible solution to Exercise 10.2.8. (i). Because ÿ is open (by definition
of topology), and ÿC = X, X is closed. Likewise, because X is open (by
definition of topology) and XC = ÿ, we see that ÿ is closed. We’ve shown
that X and ÿ are elements of K.

(ii). Let B1, . . . , Bn be a finite collection of closed subsets. We must show
that B1

t
. . .

t
Bn is closed. In other words, we must show that (B1

t
. . .

t
Bn)C

is open. By de Morgan’s laws, we see
1
B1

€
. . .

€
Bn

2C
= BC

1
‹

. . .
‹

BC
n .

Since each Bi is closed by assumption, we know that each BC
i is open. Thus

the above is an intersection of finitely many open subsets of X. Such an
intersection is known to be open by definition of topology.

(iii). Finally, given an arbitrary collection {B–}–œA of closed sets, we must
show that the intersection is closed. That is, we must show that (u

–œA B–)C

is open. Well, by de Morgan’s laws,
Q
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This last expression is a union of open subsets of X. By definition of topology,
such a union is open.

Possible solution to Exercise 10.2.11. If B µ Y is closed, then BC is open
in Y . Because f is continuous, f≠1(BC) is open in X. Moreover,

f≠1(BC) = {x œ X | f(x) œ BC}
= {x œ X | f(x) ”œ B}
= {x œ X | x ”œ f≠1(B)}
= (f≠1(B))C .

That is, the preimage of a complement is the complement of a preimage.
So f≠1(B) has an open complement. By definition, this means f≠1(B) is
closed.

Possible solution to Exercise 10.3.2. To show U is an open cover, we must
show that it is a cover, and that every element of U is open.
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U is a cover. We must show that every x œ X is an element of some
U œ U. Given x, consider the point f(x) œ Y . We know that V is a cover of
Y , so there exists some V œ V for which f(x) œ V . In particular, x œ f≠1(V )
by definition of preimage.

On the other hand, U = f≠1(V ) is an element of U by definition of U. So
x œ U , and we are finished with this claim.

U is an open cover. We must show that every U œ U is open. Well,
U œ U if and only if U = f≠1(V ) for some V œ V (by definition of U).
And any V œ V is known to be open (because V is assumed to be an open
cover). Because f is continuous, the pre-image of any o pen subset is open—
in particular, U = f≠1(V ) is open.

Possible solution to Exercise 10.4.2. We must show that any open cover of
f(X) admits a finite subcover.

By definition of subspace topology, a subset V µ f(X) is open if and only
if V = W fl f(X) for some open subset W µ Y . So, fixing an open cover V
of f(X), we know that for every V œ V, we may find some W µ Y for which
V = W fl f(X).

Let f Õ : X æ f(X) denote the continuous function guaranteed by the
universal property of the subspace topology.4 Because f Õ is continuous, we
may pull back V along f Õ and obtain an open cover of X. (This is Proposi-
tion 10.3.1.)

Concretely, this pull-back cover is

U = {U µ X | U = (f Õ)≠1(V ) for some V œ V.

(As defined in Proposition 10.3.1.)
Now we use the fact that X is compact. U is an open cover, so by

compactness of X, U admits a finite subcover. Let us denote the elements of
this finite subcover by

U1, . . . , Un.

Well, by definition, for each i, there is some Vi œ V such that Ui = f≠1(Vi).
So consider the collection

V1, . . . , Vn.

Note that each Vi is a subset of f(X).
4Remember, in terms of formulas, f

Õ(x) = f(x). The meat of f
Õ is the ability to change

the codomain of f .
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I claim this collection {V1, . . . , Vn} is a cover of f(X). To see this, we
must show that every element of f(X) is contained in some Vi. Well, let
y œ f(X). By definition, y is in the image of f , so there exists some x œ X
for which f(x) = y. Because the U1, . . . , Un are a cover of X, we conclude
that x œ Ui for some i. By definition, this Ui is the preimage of Vi, so we
conclude that f(x) œ Vi. Recalling that we chose x so that f(x) = y, we
conclude that the y we began with is an element of Vi. This shows that
{V1, . . . , Vn} forms a cover of f(X).

So we have exhibited a finite subcover {V1, . . . , Vn} of V.


