
Reading 9

Compactness, I

9.1 Writing tip: Order matters
Let’s1 say somebody writes the following:

(’bananaB)(÷r œ R>0)(weight(B)= r)

This is a bunch of symbols without great English connector words, but it is
conventionally parsed as follows:

For any banana B, there exists a positive real number r for which the weight of B is r.
(9.1.0.1)

Or, colloquially,
Every banana has a weight.

Regardless, note that when trying to parse (9.1.0.1) and write out the symbol-
ism in English, there is a logical dependency that is implicit in the symbolism
but explicit in the English: The choice of r depends on the choice of B.

On the other hand, suppose somebody writes the following:

(÷r œ R>0)(’bananaB)(weight(B)= r).

This statement is read:

There exists a positive real number r such that for every banana B, the weight of B is r..
(9.1.0.2)

1For further reading on the material here, which is covered in any intro-to-proof type
class, see Section 2.4 of Ted Sundtrom’s LibreTexts on Mathematical Logic and Proofs.
(Many other sources contain this kind of information, too.)
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2 READING 9. COMPACTNESS, I

This is now a false statement. Colloquially, it would say

There is some weight such that every banana has that weight.

This example illustrates that the order of universal quantifier ’ and the
existential quantifier ÷ matters.

Remark 9.1.1 (Such that and ÷). As another tip, you should know that
existence statements almost always have a “such that” or a “for which” at-
tached to it. In other words, we rarely care whether a banana exists – we
rather care whether a banana with certain properties exists. So when we say
“there exists a banana B such that B is green,” we are saying “there exists
at least one banana with the property that the banana is green.” You will see
this kind of statement far more in math than a statement like “there exists
a banana.”

Each time you see a “there exists” in a logical statement, make sure you
understand what kind of thing, with what kind of properties the statement
wants to exist.

9.2 Review so far
Let’s review what we’ve done in the last week:

1. We’ve defined the notion of a topology T on a set X. The definition
was a bit abstract; a topology is a collection of subsets of X, which
we will call open, satisfying some conditions. When a set is given a
topology, we call it a topological space.

2. We also saw that a given set may have many di�erent topologies, so we
often have to specify which topology we’re talking about. (For example,
when X = Rn, we could give X the discrete, the trivial, or the standard
topology. Our favorite should be the standard topology.)

3. We also saw that any poset admits a topology, called the Alexandro�
topology.

4. We defined a function between topological spaces to be continuous if
preimages of open subsets are open.
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5. We then gave a way to turn subsets of spaces into spaces, by giving
subsets the subspace topology. So for example, things like simplices,
spheres, and disks are all of a sudden topological spaces! (Because
they are subsets of Rn.)

Today, we’re going to learn about a very important property that some
topological spaces have, called compactness.

In a highly sophisticated way, a space being “compact” will be very much
like a set being “finite.” For this reason, just as you probably think finite sets
are easier to deal with than infinite sets, compact spaces can often be easier
to deal with than non-compact spaces. Compactness is some way that we
can talk about a space as being “small enough” to comprehend using very
nice tools.

This doesn’t mean that non-compact spaces are inaccessible. (Even for
sets, we can understand infinite sets like Z just fine.) But there are more
tools available for studying compact spaces.

9.3 Open covers and subcovers
Do you remember when we proved that Rn could be written as a union of
open balls? There were many, many di�erent ways that we could do this—we
could take a union of open balls all centered at the origin, or we could take
a union of open balls with all kinds of di�erent centers, too.

Regardless, either collection is an example of a cover.

Definition 9.3.1. Let X be a set. A cover of X is a collection of subsets
{U–}–œA such that €

–œA

U– = X.

We may denote an open cover by a fancy font for the letter U , so

U = {U–}–œA.

The word “cover” is used because the collection “covers” all of X. (Every
element of x is inside one of the U–.)

Remark 9.3.2. Instead of working with the generality of a function A æ
P(X), we will often assume that a cover is specified by a subset of P(X)
(that is, we will often assume that A æ P(X) is an injection).
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Definition 9.3.3. Fix a cover U = {U–}–œA of a set X, and choose a subset
B µ A of the indexing set A. If the collection {U—}—œB is a cover of X, we
call it a subcover of the original cover.

Warning 9.3.4. A subcover of U typically consists of fewer elements, but
not necessarily smaller elements. For example, the collection

U = {(≠2, 2), (≠1, 1)}

is a cover for the interval (≠2, 2). A subcover for this could consist of U
itself, or could consist of one subset:

{(≠2, 2)}.

Something like {(≠2, 0), (≠1, 1), (0, 2)} is not a subcover of U.

Definition 9.3.5. Let X be a topological space. A cover {U–}–œA is called
an open cover if, for every – œ A, the set U– µ X is open.

In other words, an open cover is a cover consisting of open subsets.

Exercise 9.3.6. Let A = Rn ◊ R>0, and for all (x, r) œ A, define U(x,r) =
Ball(x, r). We saw long ago that this collection {U(x,r)}(x,r)œA is a cover of
Rn.

Now choose the subset B µ A consisting of those (x, r) for which x is the
origin of Rn, and r is a positive integer.

Show that the collection {U—}—œB is also a cover of Rn.
Conclude that {U—}—œB is a subcover of {U–}–œA.

Exercise 9.3.7. Show that the covers in Exercise 9.3.6 are open covers of
Rn.

The following exercise shows that covers of X induce covers of subspaces;
moreover, open covers of X induce open covers of A, simply by intersecting
elements of the cover with A:

Exercise 9.3.8. Let {U–}–œA be an open cover of a topological space X.
Fix a subset A µ X, and endow it with the subspace topology.

Then the collection {V–}–œA, where

V– := U– fl A

is an open cover of A.
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A possible solution. We must verify two facts: That {V–}–œA is a cover of A,
and that each V– is open (in A).

Each V– is open by definition of subspace topology.
Clearly, the union t

–œA V– is a subset of A because each V– is a subset
of A.

So we must only show that A is a subset of this union. So fix a œ A.
Then a œ X because A is a subset of X. In particular, because {U–}–œA is
a cover of X, there is some – œ A for which a œ U–. Because a œ A by
assumption, we conclude that a œ U– fl A = V–. This finishes the proof.

9.4 The definition of compactness
Here is one of the most important definitions in topology; it is one of the
most confusing as well, but it is incredibly powerful.

Definition 9.4.1. Let X be a topological space. We say that X is compact
if every open cover of X admits a finite subcover.

In other words, X is called compact if the following holds. For every open
cover {U–}–œA, there exists some finite subset B µ A so that the collection
{U—}—œB is a cover of X.

Remark 9.4.2. The word “finite” in “finite subcover” refers to the fact that
the indexing set B is finite – it does not require each open set U— to be
“finite” in any sense.

Proposition 9.4.3. Let X be a compact space. Suppose Y is a space home-
omorphic to X. Then Y is also compact.

This proposition is a verification that “compactness” is a notion that de-
pends only on the topology of space—after all, homeomorphisms are equiv-
alences of topological spaces.

Exercise 9.4.4. Prove Proposition 9.4.3.

Possible solution to Exercise 9.4.4. Let V be an open cover of Y . We must
prove that V admits a finite subcover.

Fix a continuous function „ : X æ Y . Then for all V œ V, the pre-image
„≠1(V ) is an open subset of X. Let U be the collection of open subsets given
by

U := {U µ X | U = „≠1(V ) for some V œ V.
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In other words, U œ U if and only if U arises as the preimage of some V œ V.
Then U is an open cover of X, because x œ X =∆ f(x) œ V for some
V œ V. (This last claim uses that V is a cover of Y .)

Because X is compact, we may choose a finite subcover of U. So let
U1, . . . , Un be the finite collection of open sets of X for which t

i=1,...,n Ui = X
and for which Ui œ U for all i.

Now suppose that „ is further a homeomorphism.2 Then „ is a bijec-
tion, so if the collection {U1, . . . , Un} is a cover of X, then the collection
{„(U1), . . . , „(Un)} is a cover of Y . Moreover, again because „ is a bijection,
the fact that Ui = „≠1(Vi) means „(Ui) = Vi. So the collection {V1, . . . , Vn}
is a finite subcover of V.

We have shown that any open cover of Y admits a finite subcover, com-
pleting the proof.

9.5 Straightforward examples
Whenever you are given a new definition, it is good to ask for examples and
non-examples. Here are a few:

Exercise 9.5.1. Let X be a finite set, and let T be a topology on the finite
set. (So that we may consider X to be a topological space.)

Show that X is compact.

Exercise 9.5.2. Let X = Rn with the standard topology. Prove this space
is not compact.

Exercise 9.5.3. Let X be an infinite set, and let Tdisc be the discrete topol-
ogy on X. (This means that any subset of X is declared open.)

Prove that (X,Tdisc) is not a compact space.

Possible solution to Exercise 9.5.1. Any topology T µ P(X) has only finitely
many elements, so X has only finitely many open subsets to begin with. So
any open cover is already a finite cover – meaning any open cover admits a
finite subcover (namely, the open cover itself).

2This does NOT mean that every function from X to Y H is a homeomorphism; but
this is a round-about way of saying that we can choose some homeomorphism from X to
Y , and we are calling it „ for no good reason.
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Possible solution to Exercise 9.5.2. To prove that something is not compact,
we need only find one example of an open cover that does not admit a finite
subcover.

So let’s choose the following open cover: Let A = Z>0 (so that A is the
set of positive integers), and define, for all n œ A,

Un := Ball(0, n)

to be the open ball of radius n about the origin of Rn. We have seen that
{Un}nœZ>0 is an open cover of Rn.

Now, if B µ A is any finite subset (so that B is some finite collection
of positive integers), there is a maximal element of B. Call this maximal
element N . Then €

—œB

U— = UN = Ball(0, N).

In particular, the collection {U—}—œB is not a cover of Rn because any element
x œ Rn having distance larger than N from the origin is not inside the uniont

—œB U—.
Thus, the open cover {Un}nœZ>0 admits no finite subcover. This shows

that Rn is not compact.

Possible solution to Exercise 9.5.3. Let A = X, and for all x œ A, declare
Ux to be the one-element set {x} µ X. By definition of the discrete topology,
Ux is open in X. Hence {Ux}xœA is an open cover of X.

On the other hand, this does not admit a finite subcover. After all, a
finite subset of A is a finite collection {x1, . . . , xn} of some points in X. The
union of the sets {xi}i=1,...,n is clearly the set {x1, . . . , xn}, which is not all of
X because X is assumed infinite.

This shows that any infinite set, when equipped with the discrete topol-
ogy, is not compact.

9.6 Some compact posets
To see the simplest examples of compact topological spaces that have in-
finitely many elements, we turn to posets.

Let Z = Z>0 fi {Œ}. In other words, as a set, Z is obtained by adding
one new element to the set of all positive integers. We call this new element
Œ. You’ll see why in a moment.
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Note that Z has (countably) infinite cardinality.
We can give Z a poset structure as follows. If a, b œ Z>0 µ Z, we declare

a Æ b if a is less than or equal to b in the usual sense (of integers being less
than or equal to each other). If a œ Z>0 and b = Œ, we declare a Æ b. We
also declare that Œ Æ Œ to ensure reflexivity.

I will leave it to you to see that this relation is transitive and antisym-
metric.

Then let us endow Z with the Alexandro� topology.

Exercise 9.6.1. Prove Z is compact.

If you can prove the above, you realize that the only property of Z we
used is that there is some element (namely, 1) that is less than or equal to
any other element. Such an element doesn’t always exist in a poset. (For
example, the poset Z doesn’t have such an element.) But here is another
example of a compact poset:

Exercise 9.6.2. Let A be a set. (Infinite or otherwise.) Let P(A) be the
power set, considered as a poset via the relation µ. Then P(A), given the
Alexandro� topology, is compact.

Exercise 9.6.3. Show that there exist topological spaces X and Y for which
there exists a bijection from X to Y , but for which there exists no homeo-
morphism from X to Y . (Hint: You could even take X = Y !)

Remark: This shows that compactness is indeed a “topological” property
– compactness is not at all about size of a set, it is about the type of topology
a set is given.

Possible solution to Exercise 9.6.1. Let U µ Z be an open subset. By defi-
nition of Alexandro� topology, we know that for every a œ U and every b œ Z
satisfying a Æ b, it must be that b œ U . Thus, whenever U is non-empty, we
know that Œ œ U .

Well, if U is an open cover of Z, there is some element U œ U containing
1 œ Z. Then by definition of Alexandrov topology, U contains every element
b satisfying b > 1. In other words, U = Z.

Thus, any open cover U must satisfy Z œ U, and in particular, any open
cover admits a subcover consisting of only one open subset: Z.

Possible solution to Exercise 9.6.2. Any open cover U of P(A) must have
some U œ U for which ÿ œ U . But by definition of Alexandro� topology, any
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B œ P(A) satisfying ÿ µ B must be contained in U ; meaning U contains
every element of P(A).

In other words, any open cover U must satisfy P(A) œ U; so U admits
a finite subcover—in fact, a subcover consisting of a single element called
P(A).

Possible solution to Exercise 9.6.3. Let A be an infinite set and let X =
P(A) with the Alexandro� topology induced by the relation µ. Let Y be
the same set, but with the discrete topology. We know X is compact by
Exercise 9.6.2, but Y is not compact by Exercise 9.5.3. Thus, X and Y
could not be homeomorphic by Proposition 9.4.3.

On the other hand, the identity function from X to Y (note X and Y are
the same set) is a bijection.

9.7 Closed intervals
The following is the most important example of a compact space. Most other
examples of compact subspaces of Euclidean space are in one way or another
constructed out of this one:

Theorem 9.7.1. Let A = [0, 1] µ R be the closed interval from 0 to 1. Then
A, given the subspace topology, is compact.

You may use this theorem freely from now on. It will soon be superseded
by the Heine-Borel theorem, but the proof of the Heine-Borel theorem will
actually depend on Theorem 9.7.1.

In fact, there is nothing special about [0, 1]. Any closed and bounded
interval is compact as a consequence of the above theorem.

Corollary 9.7.2. Fix two real numbers a, b satisfying a < b. Then the
closed interval [a, b] (endowed with the subspace topology inherited from R)
is compact.

Proof. By Proposition 9.4.3, we are finished if we can exhibit a homeomor-
phism between [a, b] and [0, 1].

Consider the function

f : R æ R, x ‘æ (b ≠ a)x + a.
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f is continuous, as we know from calculus. (This is relying on the Theorem
from previous lectures that continuity in the sense of topology is equivalent
to continuity in the sense of calculus.)

We know that, because [0, 1] is given the subspace topology, the inclusion
function i[0,1] : [0, 1] æ R is also continuous. Moreover, by Proposition 7.5.6,
the composition of conitnuous functions is still continuous, so we see that
the function

j = f ¶ iA[0, 1] : [0, 1] æ R, x ‘æ (b ≠ a)x + a

is continuous. What is the image of j? It is precisely the interval [a, b]. (Note
that j(0) = a and j(1) = b; I’ll let you fill in the rest of the details.) Thus,
by the universal property of the subspace topology of [a, b] µ R, the function

jÕ : [0, 1] æ [a, b], x ‘æ (b ≠ a)x + a

is continuous. It is straightforward to verify that jÕ is both an injection and
a surjection, hence a bijection.

In fact, you can write an inverse to jÕ as follows:

g : [a, b] æ [0, 1] x ‘æ 1
b ≠ a

(x ≠ a).

A similar argument to the demonstration that jÕ is continuous shows that g
is also continuous.

Because jÕ is a continuous bijection whose inverse is also continuous, jÕ is
a homeomorphism.

9.8 Bonus material: Proof that [0, 1] is com-
pact

I will write the proof here, but you may take the Theorem 9.7.1 for granted.
You will prove it in an Analysis class. The most important part of the proof
is an understanding of the construction of R.

First, let us recall the most “consequential”3 property of R:

3This is a bad joke.
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Proposition 9.8.1. Let a1, a2, . . . be a bounded, increasing sequence of ra-
tional numbers. This means that ai Æ ai+1 for all i, and that there is some
real number A so that ai < A for all i.

Then the sequence a1, a2, . . . converges to some b œ R.

I state this as a proposition, but it is a direct consequence of the con-
struction of the real line as a Cauchy complete entity. I will not get much
more into this here. Indeed, the fact one can construct a set satisfying the
above Proposition is the theorem that allows us to construct the real line.

Proof of Theorem 9.7.1. Easy Case: Let us first assume that U is an open
cover of [0, 1] by open balls. More accurately, suppose that for every U œ U,
there is an x œ R and r > 0 œ R such that U = Ball(x, r) fl [0, 1]. We
will explain at the end why only considering this easy case su�ces for us to
conclude the theorem.

Given such an open cover {U–}–œA of [0, 1], we now show that there is
a finite subcover. For every – œ A, we choose the numbers (x–, r–) so that
U– = Ball(x–, r–).

To begin our proof, let A1 µ A consist of those – for which 0 œ Ball(x–, r–),
and let

a1 := sup
–œA1

(x– + r–).

If a1 > 1, we are done, for then there is some (x–, r–) for which Ball(x–, r–)
contains both 0 and 1, hence the entire interval [0, 1]. (This exhibits an open
subcover with a single element—[0, 1] itself.)

So suppose a1 Æ 1. We let A2 µ A consist of those – for which a1 œ
Ball(x–, r–). As before, we define

a2 := sup
–œA2

(x– + r–).

Inductively, if it turns out that an Æ 1, we may define An+1 µ A to consist
of those – for which an œ Ball(x–, r–), and set

an+1

to equal the lesser of 1 and sup–œAn+1 x– + r–. (So an+1 Æ 1.) Note that

an Æ an+1. (9.8.0.1)
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Why? By definition of open cover, there is some element U = Ball(x, r) in
U that contains an, so by the recentering lemma, there is some ‘ > 0 so that
Ball(an, ‘) is fully contained in U . In particular, an+1 Ø x + r > an + ‘, so
an+1 > an + ‘. In particular, (9.8.0.1) follows.

Then we have an increasing sequence a1, a2, . . . which is bounded (as
an Æ 1 for all i). Moreover, by choosing rational numbers rn so that
an < rn < an+1, we obtain a real number b to which r1, r2, . . . converge by
Proposition 9.8.1. I promise it is straightforward to check that the sequence
a1, a2, . . . also converges to b.

On the other hand, [0, 1] is closed. (It is also straightforward to see
that the complement is open.) Hence b œ [0, 1]. But by definition of our
open cover, there is some (x, r) for which Ball(x, r) contains b. Further by
definition of convergence, this means that for every n large enough, an œ
Ball(x, r), contradicting the definition of an+1 unless an+1 = 1. In other
words, for n large enough, all the an equals 1. So there is only a finite
collection of numbers 0 = a0, a1, a2, . . . , an = 1 picked out by the above
process.

Now choose, for each i, a pair (xi, ri) so that Ball(xi, ri) contains ai

and Ball(xi, ri) œ U. By definition of the ai, we can choose these so that
Ball(xi, ri) intersects Ball(xi+1, ri+1) for each i. In particular, these form a
finite subcover.

Now let us explain why the Easy Case is enough to complete the proof.
Given an arbitrary open cover V = {V—}—œB, we may consider a much bigger
open cover U = {U–}–œA consisting of only open balls, satisfying the property
that for every open ball U– œ U, there exists some — such that U– µ V—. (For
example, A could consist of triplets (x, r, —) for which Ball(x, r) µ V—.) Then
the Easy Case allows us to choose a finite collection –1, . . . , –n œ A for which
{U–1 , . . . , U–n} forms a subcover. Then, for each i, choosing a —i such that
V—i ∏ U–i , we see that {V—1 , . . . , V—n} forms a subcover of V.


