
Reading 8

Subspaces

8.1 On some common phrases

8.1.1 Such that
This is a quick review of the phrase “such that.”

“Such that” is completely synonymous with the following expressions:

1. “For which”

2. “Satisfying (the condition that)”

3. “Meeting the requirement that”

4. “For which it is guaranteed that”

For example, all the following sentences have the exact same content:

(a) Let T be a triangle such that all sides of T have equal length.

(b) Let T be a triangle for which all sides of T have equal length.

(c) Let T be a triangle for which all sides have equal length.

(d) Let T be a triangle meeting the requirement that all sides have equal
length.

(e) Let T be a triangle meeting the requirement that all sides of T have
equal length.
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(f) Let T be a triangle for which it is guaranteed that all sides of T have
equal length.

(g) Let T be a triangle satisfying the condition that all sides of T have equal
length.

Which is to say, we are considering some equilateral triangle T .
As an example of the misuse of the phrase: Some homework submissions

begin sentences with the words “such that.” This sentence will often end up
not making sense!

8.1.2 “Bijective”
Remember that a function f : X æ Y is called

• An injection if f(x) = f(xÕ) implies x = xÕ,

• A surjection if for any y œ Y , there is an x œ X for which f(x) = y,
and

• A bijection if f is both an injection and a surjection.

These definitions are about functions. In particular, functions are surjec-
tions/injections/bijections.

But it does not make sense to apply these terms to sets – for example,
“these two sets are injective” would be a mistake. It also does not make sense
to say “these two sets are surjective.”

Now, while it is sometimes acceptable to say that two sets are “bijective,”
I will often discourage you from doing so; I want to prevent you from thinking
that the sets are more important than the bijections themselves. In math—
as you know from calculus—it is just as important (if not more important)
to study functions as it is to study sets.

You should really think about bijections themselves as the information,
and not some vague notion that two sets might “have the same size.” The way
in which you prove that two sets have the same size is through a bijection.

8.1.3 Let
I also want to comment on the phrase “Let X be a set.” What does this
phrase even mean?
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Well, instead of answering that question, let me tell you what the phrase
does.

Secretly, “Let X be a set” is just telling you what the symbol X will
mean. It is telling you that X will be a symbol representing a set.

So you shouldn’t think of “Let...” as being some deep, mysterious math-
ematical sentence. It’s really just telling you that “if you see X later on, you
know it’s some set.”

It’s defining the type of the symbol X.
As another example, “Let x œ X” means now that lower case x will be

an element of the set X. Again, it’s telling you what kind of thing (i.e., what
type) the symbol x represents.

Sometimes, you will see “Let f : X æ Y.” Technically, this is not a
complete English sentence, but it is a complete idea mathematically. It
means that the symbol f will represent a function, and X will represent the
domain of the function, while Y represents the codomain.

Note that I could have written “Let ¸ be a set.” The symbol doesn’t
matter; it doesn’t need to even be a letter—though we tend to use letters of
the Greek and Roman varieties.

So to summarize, “Let...” really conveys the following ideas:

• “I am setting the following notation”

• “The following symbol means...”

8.1.4 Definitions are abbreviations

I want you to know that most definitions are abbreviations. The definition
of “democracy” tells us that we can use the word democracy as a very short
(only four syllables!) way to describe a very wordy or complicated concept.
It is the same in math. Any math definition (like “open”) is just a short
(two-syllable) way to express a precise idea that would take a long time to
describe.

Over time and use, these abbreviations begin to take on intuitive mean-
ings. I promise that you are developing these intuitions as we go on with
this class, so be patient with yourself. For now, rely on the (very) formal
definitions to prove things.
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8.2 Subspaces: Universal property, definition,
and examples

Now, onto the topic of today.

8.2.1 Motivation
Last time, we learned that the idea of “continuous function” has a huge gen-
eralization.1 (It will be your homework to prove that, in fact, the notion of
“continuous function” from last class is indeed compatible with the notion of
“continuous function” from calculus class.) In fact, between any two topo-
logical spaces, and any function from one to the other, we can ask whether
the function is continuous.

We know from calculus that continuous functions are special. They can
be studied, because they have special properties. So with the blind faith that
the math community is not introducing this new notion of continuity without
merit, let’s try to expand our ability to make new topological spaces.

For if we can make more topological spaces, we can apply the tools of
continuous functions in more contexts.

8.2.2 Review of some important functions
Note that in this section, no set is assumed to be a topological space, (so no
function is assumed to be continuous2).

Definition 8.2.1. Let X be a set. Then the identity function of X is the
function that sends any x œ X to itself. We write

id : X æ X

or, sometimes,
idX : X æ X

for the identity function.
1Generalization, in math, means that an idea that was only used in one context can

now be used in many more contexts.
2Remember that it doesn’t even make sense to ask whether a function is continuous if

its domain and codomain aren’t topological spaces.
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Exercise 8.2.2. The identity function has a very nice property—when you
compose it with other functions, the other functions don’t change.

More explicitly, let f : X æ Y be some function. Then prove that

idY ¶f = f and f ¶ idX = f.

So the word “identity function” is just a term for us to use. It’s not a
new idea. It’s just a term. You’re responsible for knowing what the term
abbreviates.

Here is another important kind of function.

Definition 8.2.3. Let X be a set and let A µ X. Then the inclusion
function of A into X is the function sending any element x œ A to itself (so
i(x) = x, but note that this is considered an equality of elements of X, not
of elements of A). We denote the inclusion function by

i : A æ X, or iA : A æ X.

Remark 8.2.4. There is a big di�erence between the meaning of “A µ X”
and the meaning contained in the function i. That A is a subset of X is a
property of A, it’s just something you can verify. But i is a very particular
function. (Note that there are typically many, many functions from A to X.)

Here is a very important property of the inclusion function.

Exercise 8.2.5. Suppose that there is another set W and a function f :
W æ X. If the image of f is contained in A, show we can construct a new
function f Õ : W æ A such that

iA ¶ f Õ = f.

Possible solution to Exercise 8.2.5. Confusingly, this f Õ is defined in the ex-
act same way as f is, in terms of formulas. For all w œ W , we define f Õ to
be the function with

f Õ(w) = f(w).
The big di�erence is that the codomain of f Õ is A, while the codomain of f
is X itself. Then, indeed,

(iA ¶ f Õ)(w) = iA(f Õ(w)) = iA(f(w)) = f(w).

Because this is true for all w œ W , we conclude that iA ¶ f Õ = f as functions.
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8.2.3 The universal property of subspaces
Let X be a topological space. (Remember, this means that X is given some
topology T.) And let A µ X be a subset. Can we give A a topology that is
somehow attuned to, or compatible with, the topology of X?

For example, can we guarantee that the inclusion function iA : A æ X is
a continuous function?

The upshot is that yes, we can give A a topology such that iA is contin-
uous. In fact, we can do more:

Theorem 8.2.6 (Universal property of subspaces). Let X be a topological
space with topology T, and fix any subset A µ X. Then there exists a
topology TA on A satisfying the following properties:

1. The inclusion function iA : A æ X is continuous.

2. Moreover, let W be another topological space and f : W æ X a con-
tinuous function for which f(W ) µ A. Then there exists a continuous3

function f Õ : W æ A such that

iA ¶ f Õ = f.

3. Finally, f Õ is unique4 among all continuous functions f Õ satisfying the
equality iA ¶ f Õ = f .

The proof is given later in Section 8.3—just combine the three propo-
sitions in that Section. It turns out that any topology with the properties
above is unique – in other words, we can give A the topology satisfying the
properties above. We will call this the subspace topology.

8.2.4 Applications of universal property of subspaces
This Theorem is pretty amazing. You’re not expected to process everything
yet, so let me go through some examples.

3Here, we are using TA when discussing the continuity of f
Õ.

4This means that if g is any other function satisfying iA ¶ g = f , then we can conclude
that g = f

Õ.
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Example 8.2.7. Let X = Rn. Recall that last time, we gave X the standard
topology. A set U µ X is in the topology T if and only if U is open (i.e., if
it is a union of open balls).

We learned about many interesting subsets of X in week one. For example,
we could choose A µ X to be

• The (n ≠ 1)-simplex, �n≠1 µ X.

• The (n ≠ 1)-sphere, Sn≠1 µ X.

• The n-cube.

• The closed n-dimensional unit disk.

• The open ball centered at some point x œ Rn with radius r > 0.

By the theorem above, we can consider any of these to be topological spaces.

Moreover, thanks to the theorem, we can start producing continuous maps
into these topological spaces.

Exercise 8.2.8. Let’s say that we want to find a continuous map from R
into the sphere Sn≠1. Using Theorem 8.2.6, show that if you are given a
continuous map from R to Rn whose image lies inside the sphere, then you
have automatically found a continuous map from R to Sn≠1.

Exercise 8.2.9. Let Dn µ Rn be the closed unit disk. (This is the set of all
points with distance Æ 1 from the origin of Rn.)

Let Sn≠1 µ Rn be the (n ≠ 1)-dimensional sphere. (This is the set of all
points of distance exactly 1 from the origin of Rn.)

(a) Using Theorem 8.2.6, show that the inclusion map i : Sn≠1 æ Rn is
continuous.

(b) Show that inclusion defines a map

f Õ : Sn≠1 æ Dn

and using Theorem 8.2.6, show that this map is continuous.

(c) Using Theorem 8.2.6, show f Õ is the only map for which iDn ¶ f Õ = f .
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Isn’t this great? We suddenly have hope of constructing continuous func-
tions between various interesting spaces. In fact, we’ve shown that “including
the sphere into the disk” is a continuous function (when we give the sphere
Sn≠1 and the disk Dn the topology from the theorem above).

Remark 8.2.10. We just engaged in a very common exercise in math: With-
out knowing that a statement is true, we explored the consequences of the
statement being true. We saw that the statement (the universal property of
subspaces) seems very useful!

You secretly do this when you do a proof by contradiction. You explore
how the universe would be if a statement were true; and if the universe comes
upon a contradiction, you realize that the statement could not be true.

8.2.5 The subspace topology

The theorem has two parts: There exists a topology on A µ X, and then
there are the enumerated three properties that result from this topology.

This special property (resulting in the three properties of Theorem 8.2.6)
is as follows:

Definition 8.2.11 (Subspace topology). Let X be a topological space. (We
will call its topology T.) Let A µ X.

The subspace topology on A is the following collection of subsets of A:

TA := {U µ A | there exists an open V µ X for which U = V fl A.}

In words, the subspace topology TA declares a subset of A to be open if
and only if the subset arises as the intersection of A with an open subset of
X.
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8.2.6 Examples of open subsets of �1 and D2

Example 8.2.12. Let’s look at one open subsets of �1 look like. Remember,
�1 µ R2 is a “tilted” closed line segment in R2:
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Taking an open ball in R2 centered at the origin, of radius, say, 1.5, let’s
intersect it with the 1-simplex:

We see that an “open interval” inside of the 1-simplex is an open subset of
the 1-simplex.

We can also take unions open balls in R2, and intersect the 1-simplex with
such unions. Here is an example of a union of two open balls, intersected
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with the 1-simplex:

The intersection forms two disjoint, open intervals inside �1. This disjoint
union is an open subset of �1.

A more interesting example of open subset of �1 is as follows:
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Note that the intersection of this open ball with �1 includes an “endpoint”
of the 1-simplex. Indeed, the intersection looks like it is “closed” on one end
(at the point (0, 1) œ �1 µ R2) but open at the other end. This is still an
open subset of �1!

What the lesson here is that—although it is still good to think of “open”
as, in some cases, “lacking endpoints” or “lacking boundary points,” this
intuition can fail you when the shape you are in itself has boundary points
or endpoints (like �1).

Example 8.2.13. Now let A = D2 be the closed unit disk. Then below is a
picture of A, and an open ball inside R2;

The intersection is some open subset of D2. Note that the intersection looks
like a “lune,” where one edge of the lune (laying on the boundary circle of D2)
is part of the subset, while the other edge of the lune (along the boundary
of the open ball) is not; the two points at which these two arcs meet are also
not in the open subset.

Remark 8.2.14. For any space, there are potentially a lot of open subsets.
I would not dare to try to understand every open subset of Rn, for example;
it’s just impossible.
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But what math, and abstract reasoning, allows us to do is still prove
something about the collection of open subsets without knowing what it is
exactly. This is the power of abstract thought.

For example, you have no idea what sin(x) is for every value of x. But
you can still say something about the function sin. You’ve simply gotten
used to it, and feel happy about it, because you’ve worked with it some. It’ll
be the same for topologies.

8.3 Proving the universal property
There is a lot that needs to be verified. For example: Is TA actually a
topology? Then, does it really verify the three properties of the theorem?

Proposition 8.3.1. The subspace topology is a topology on A.

Exercise 8.3.2. Prove Proposition 8.3.1.

Proposition 8.3.3. Let X be a topological space with topology T. Let A µ
X, endowed with the subspace topology. Then the inclusion map iA : A æ X
is continuous.

Exercise 8.3.4. Prove Proposition 8.3.3 (without using Theorem 8.2.6; re-
member, we are proving these propositions to prove this theorem).

Proposition 8.3.5. Let A µ X, and let f : W æ X be a function such
that f(W ) µ A. Define f Õ : W æ A by f Õ(w) = f(w). Then f Õ is continuous
(with respect to the subspace topology of A) if f is continuous.

Exercise 8.3.6. Prove Proposition 8.3.5 (without using Theorem 8.2.6; re-
member, we are proving these propositions to prove this theorem).

Proposition 8.3.7. f Õ from above is the unique function from W to A which
is continuous, and which satisfies iA ¶ f Õ = f .

Exercise 8.3.8. Prove Proposition 8.3.7 (without using Theorem 8.2.6; re-
member, we are proving these propositions to prove this theorem).

Possible solution to Exercise 8.3.2. Remember that a collection of subsets of
A is called a topology if the following three properties are satisfied.5

5See your notes from previous lecture.
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(i) The empty set and A are both in the collection.

(ii) The collection is closed under arbitrary unions.

(iii) The collection is closed under finite intersections.

First, we verify (i). Since T is a topology on X, we know that ÿ œ T.
Moreover, ÿ fl A = ÿ. Setting U = ÿ and V = ÿ we thus see that U œ TA (by
definition of TA).

Likewise, letting V = X (which is in T by definition of topology on X)
and noting that A = V flA, we see that U = A is in TA (by definition of TA).

Now we verify (ii). Suppose we have a collection of open subsets A æ
TA, – ‘æ U–—so for each – œ A, each U– is in the subspace topology TA. By
definition of TA, then, we conclude that for all –, there is some V– œ T such
that V– fl A = U–. But we have that6

€

–œA

U– =
Q

a
€

–œA

V–

R

b fl A.

Setting V = t
–œA V–, we know that V œ T by definition of topology (on X).

Hence by definition of T, the equality above tells us that t
––A U– is in TA.

A similar proof verifies (iii).

Possible solution to Exercise 8.3.4. By definition of continuity, we must prove
that for every open subset V µ X, the pre-image

i≠1
A (V ) := {a œ A | iA(a) œ V }

is in TA. By definition of iA: For every a œ A, we know that iA(a) œ V ≈∆
a œ V . Hence i≠1

A (V ) = A fl V . But V is open, so i≠1
A (V ) is an element of

cTA by definition of TA.

Possible solution to Exercise 8.3.6. We must verify that the preimage of any
open subset of A is open in W .

Let U µ A be open. Then (f Õ)≠1(U) = {w œ W | f Õ(w) œ U} by definition
of preimage.

6This is because
!t

–œA V–

"
fl A =

t
–œA(V– fl A) =

t
–œA U– where the last equality

is how we chose the V–. The first equality is a fact you should verify! You can also see
Section 8.4.1.
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By definition of TA, we know there exists an open subset V µ X so that
U = V fl A. On the other hand, f : W æ X is assumed continuous, so we
know f≠1(V ) must be open in W . Note that

f≠1(V ) = {w œ W |f(w) œ V }.

But because f(W ) µ A, we know that f(w) œ V ≈∆ f(w) œ V fl A. Thus

f≠1(V ) = {w œ W |f(w) œ V }
= {w œ W |f(w) œ V fl A}
= {w œ W |f(w) œ U}
= {w œ W |f Õ(w) œ U}
= (f Õ)≠1(U). (8.3.0.1)

We wanted to show that this last subset of W is open; since f≠1(V ) is open,
we are done.

Possible solution to Exercise 8.3.8. In fact, f Õ is the unique function satisfy-
ing the equality iA ¶ f Õ = f . (This is just a matter of sets, and has nothing
to do with spaces.)

To see this, if g is another function satisfying iA ¶ g = f , let us use the
fact that iA is injective to note that, for every w œ W ,

iA(f Õ(w)) = iA(g(w)) =∆ f Õ(w) = g(w).

Since f Õ(w) = g(w) for every w œ W , f Õ and g are (by definition of function)
the same function.

8.4 Some comments to help
Note that all of our proofs today only involved intersections and unions and
preimages. This is more or less because all our definitions involve only these
notions. (How do you define continuity, and how do you define topology?)

Proofs that only require the kinds of ingredients that went into the def-
initions and statements are often regarded as “straightforward” in math.
(Though, as you know from experience, these proofs can be anything but
straightforward when one first gets used to the techniques.) They will be
straightforward to you, too, if you get used to these techniques.
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By the way, one reason that these proofs only require such tools is because
we are only given such tools by the hypotheses. We are proving statements
about every topological space, and we haven’t seen whether every topological
space even has a notion of distance (they don’t! Rn is special!), so all we can
use is things about unions, intersections, et cetera.

So, strangely enough, the foundations of topology just rest on basic facts
about intersections, unions, and pre-images.

Next week, we’ll see some results (like the Heine-Borel theorem) that
begin to actually use Rn a little more.

8.4.1 Unions/intersection verification
In the proof of Proposition 8.3.1, I claimed

€

–œA

U– =
Q

a
€

–œA

V–

R

b fl A.

where the V– were defined to be (open) subsets of X for which V– fl A = U–.
Let’s verify this.

To verify the equality of sets, we need to show µ and ∏.

Proof that t
–œA U– µ (t

–œA V–) fl A . I will write this proof in a di�erent
format, in case it helps. You can feel free to write proofs in this format, too:

Suppose x is in t
–œA U–.

1. Then x œ U– for some – œ A (by definition of union).

2. Thus x œ V– fl A (because V– is a set chosen to satisfy V– fl A = U–).

3. Hence x œ t
–œA(V– fl A) (by definition of union).

4. Now I claim t
–œA(V– fl A) = (t

–œA V–) fl A.

(a) µ: If y œ t
–œA(V–flA), then for some –, y œ V–flA. In particular,

y is in V– for some –, hence inside t
–œA V–. And because y œ

V– fl A, y is an element of A, too.
We have shown that y is an element of both A and of t

–œcA V–.
(b) ∏: Assume that y is in both t

–œA V– and A. Then for some
– œ A, we know that y œ V–. In particular, y œ V– fl A. Thus
y œ t

–œA(V– fl A).



8.4. SOME COMMENTS TO HELP 17

5. We have shown that x œ t
–œA U– implies x œ (t

–œA V–) fl A.

Proof that t
–œA U– ∏ (t

–œA V–) fl A . Suppose x is in (t
–œA V–) fl A. Note

that by line 4 above, we may thus conclude that x œ t
–œA(V– fl A).

1. Then x œ V– fl A for some – œ A (by definition of union).

2. Thus x œ U– for some – œ A (by definition of V–).

3. Thus x œ t
–œA U– (by definition of union).


